Skip to main content
Log in

Formation of multifunctional barriers to increase the radiochemical resistance of the protective coatings of HTGR fuel elements

  • Article
  • Published:
Atomic Energy Aims and scope

The radiation–size changes of pyrocarbon protective coatings on HTGR microfuel elements are analyzed. It is shown that there is a relationship between the microstructural inner pyrolytic layers and the formation of cracks in these layers as the irradiation dose accumulates. The effect of cracks in the inner pyrocarbon layers on the damage to the silicon carbide layer is examined. It is determined that incorporating into the inner pyrocarbon layer or forming on the inner pyrocarbon–silicon carbide interface compositions, for example, silicon carbide–carbon, Ti3SiC2, ZrC, TiC, and nitrides of Zr, Ti, and Al creates an obstacle to interior cracks, increasing the radiation-chemical resistance of the carbide layer and the microfuel as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Stansfield, “Evolution of HTGR coated particle fuel design,” Energy, 16, No. 1/2, 33–45 (1991).

    Article  Google Scholar 

  2. R. Matzier, “Overview of HTR technology,” in: 3rd Intern. Topical Meeting on High Temperature Reactor Technology, Johannesburg, October 1–4, 2006, Paper K 00000271.

  3. A. S. Chernikov, “HTGR fuel and fuel elements,” At. Énerg., 65, No. 1, 32–38 (1988).

    MathSciNet  Google Scholar 

  4. D. Petti, J. Buonigiorno, J. Maki, et al. “Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance,” Nucl. Eng. Design, 222, Nos. 2–3, 281–297 (2003).

    Article  Google Scholar 

  5. A. S. Chernikov, L. N. Permyakov, S. D. Kurbakov, et al., “HTGR nuclear fuel based on plutonium oxide microspheres,” At. Énerg., 88, No. 1, 35–38 (2000).

    Article  Google Scholar 

  6. I. E. Golubev, S. D. Kurbakov, and A. S. Chenikov, At. Énerg., 105, Computational-experimental studies of pyrocarbon and silicon carbide barriers for HTGR microfuel elements,” At. Énerg., 105, No. 1, 14–25 (2008).

    Google Scholar 

  7. L. Snead, T. Nozawa,Y. Katoh, et al., “Handbook of SiC properties for fuel performance modeling,” J. Nucl. Mater., 371, 329–377 (2007).

    Article  ADS  Google Scholar 

  8. R. Price, “Effects of fast neutron irradiation on pyrolitic silicon carbide,” ibid., 33, 17–22 (1969).

    Google Scholar 

  9. R. Price, “Properties of silicon carbide for nuclear fuel particle coatings,” Nucl. Technol., 35, 320–336 (1977).

    Google Scholar 

  10. L. Snead, Y. Katoh, A. Kohyama, et al., “Evaluation of neutron irradiated near-stoichiometric silicon carbide fiber composites,” J. Nucl. Mater., 283–287, 551–555 (2000).

    Article  Google Scholar 

  11. L. Snead, R. Scholz, A. Hasegawa, and A. Rebelo, “Experimental simulation of the effect of transmuted helium on the mechanical properties of silicon carbide,” ibid., 307–311, 1141–1145 (2002).

    Google Scholar 

  12. S. Nogami, A. Hasegawa, and L. Snead, “Indentation fracture toughness of neutron irradiated silicon carbide,” ibid., 1163–1167.

  13. T. Nozawa, L. Snead,Y. Katoh, and J. Miller, “Shear properties at the PyC/SiC interface of a TRISO-coating,” ibid., 371, 304–313 (2007).

    Google Scholar 

  14. Y. Katoh, N. Nashimoto, S. Kondo, et al., “Microstructure development in cubic silicon carbide during irradiation at elevated temperatures,” ibid., 351, 228–240 (2006).

    Google Scholar 

  15. F. Judd, Fast Breeder Reactors [Russian translation], Energoatomizdat, Moscow (1984).

    Google Scholar 

  16. Yu. G. Degal’tsev, N. N. Ponomarev-Stepnoi, and V. F. Kuznetsov, Behavior of High-Temperature Fuel under Irradiation, Energoatomizdat, Moscow (1987).

    Google Scholar 

  17. K. Sawa and T. Tobita, “Investigation of irradiation behavior of SiC-coated fuel particle at extended burnup,” Nucl. Technol., 142, 250–259 (2003).

    Google Scholar 

  18. R. Bullok and J. Kaae, “Performance of coated UO2 particles gettered with ZrC,” J. Nucl. Mater., 115, 69–83 (1983).

    Article  ADS  Google Scholar 

  19. G. Miller, D. Petti, and T. Maki, “Consideration of the effects of partial debonding of the IPyC and particle asphericity on TRISO-coated fuel behavior,” ibid., 334, 79–89 (2004).

    Google Scholar 

  20. J. Wang, R. Ballinger, and H. Maclean, “TIMCOAT: an integrated fuel performance model for coated particle fuel,” Nucl. Technol., 148, 68–96 (2004).

    Google Scholar 

  21. K. Minato, K. Sawa, T. Koya, et al., “Fission product release behaviour of individual coated fuel particles for high-temperature gas-cooled reactors,” ibid., 131, 36–47 (2000).

    Google Scholar 

  22. K. Minato, K. Fukuda, H. Sekino, et al., “Deterioration of ZrC-coated fuel particle caused by failure of pyrolitic carbon layer,” J. Nucl. Mater., 252, 13–21 (1998).

    Article  Google Scholar 

  23. H. Nabilek,W. Schenk,W. Heit, et al., “The performance of high-temperature reactor fuel particles at extreme temperatures,” Nucl. Technol., 84, 62–73 (1989).

    Google Scholar 

  24. R. Kerans, R. Hay, T. Parthasarathy, and M. Cinibulk, “Interface design for oxidation-resistans ceramic composites,” J. Am. Ceram. Soc., 85, No. 11, 2599–2632 (2002).

    Article  Google Scholar 

  25. S. Lee, L. Zawada, J. Staehler, and C. Folsom, “Mechanical behaviour and high-temperature performance of a woven NicalonTM/SiC ceramic-matrix composite,” ibid., 81, No. 7, 1797–1811 (1998).

    Google Scholar 

  26. A. S. Chernikov, L. I. Mikhailichenko, G. V. Orlov, and S. D. Kurbakov, “HTGR microfuel. Properties of materials for coatings and results of pre-reactor tests,” At. Énerg., 68, No. 3, 181–186 (1990).

    Google Scholar 

  27. V. M. Mel’nichenko, A. M. Sladkov, and Yu. N. Nikulin, “Structure of polymer carbon,” Usp. Khim., 41, No. 5, 736–763 (1982).

    Google Scholar 

  28. E. Wolfrum and H. Nickel, “A quantitative chemical method for the determination of the disordered carbon component in pyrocarbon coatings of fuel particles,” Nucl. Technol., 35, 293–300 (1977).

    Google Scholar 

  29. E. Pollman, J. Pelissier, C. Yust, and J. Kaae, “Transmission electron microscopy of pyrocarbon coatings,” ibid., pp. 301–309.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 106, No. 6, pp. 303–314, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbakov, S.D. Formation of multifunctional barriers to increase the radiochemical resistance of the protective coatings of HTGR fuel elements. At Energy 106, 377–388 (2009). https://doi.org/10.1007/s10512-009-9187-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-009-9187-1

Keywords

Navigation