Advertisement

Atomic Energy

, Volume 101, Issue 2, pp 588–592 | Cite as

New requirements on enriched isotopes for experiments studying neutrinoless double β-decay (GERDA experiment)

  • A. N. Shubin
  • A. N. Gilev
  • D. B. Kononov
  • A. A. Mis’kov
  • E. A. Nikitina
  • G. M. Skorynin
  • I. R. Barabanov
  • L. B. Bezrukov
  • A. N. Denisov
  • N. M. Sobolevskii
  • S. G. Belogurov
  • V. N. Kornoukhov
  • M. Altman
  • A. Caldwell
Article

Abstract

Work on the production of enriched germanium performed at Élektrokhimicheskii Zavod is described. This germanium is to be used for experiments searching for neutrinoless double β-decay using 76Ge. One of the main requirements for the enriched product is that its activation (formation of long-lived 68Ge and 60Co) by the nuclear-active component of cosmic rays must be decreased. A system of measures which greatly decrease the production of these isotopes to a level which satisfies the requirements of the GERDA experiment has been developed and adopted.

Keywords

Germanium Enrich Isotope Neutrinoless Double Beta Decay Spallation Reaction Transport Container 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. Zdesenko, “Colloquium: the future of double β decay research,” Rev. Mod. Phys., 74, No. 3, 663–684 (2002).CrossRefGoogle Scholar
  2. 2.
    S. Elliott and J. Engel, “Double beta decay,” J. Phys., C30, 183–215 (2004).Google Scholar
  3. 3.
    Q. Ahmad, R. Allen, T. Andersen, et al., “Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory,” Phys. Rev. Lett., 89, 011301–011307 (2002).Google Scholar
  4. 4.
    Y. Fukuda, T. Hayakawa, E. Ichihara, et al., “Evidence for oscillations of atmospheric neutrinos,” Phys. Rev. Lett., 81, 1562–1567 (1998).CrossRefGoogle Scholar
  5. 5.
    H. Klapdor-Kleingrothaus, A. Dietz, L. Baudis, et al., “Latest results from the Heidelberg-Moscow double beta decay experiment,” Eur. Phys. J., A12, 147–154 (2001).Google Scholar
  6. 6.
    C. Aalseth, F. Avignone, R. Brodzinski, et al., “Neutrinoless double beta decay of 76Ge: first results from the International Germanium Experiment (IGEX) with six isotopically enriched detectors,” Phys. Rev., C59, 2108–2113 (1999).Google Scholar
  7. 7.
    S. Schoenert, “The GERmanium Detector Array (GERDA) for the search of neutrinoless beta beta decays of Ge-76 at LNGS,” Nucl. Phys. (Proc. Suppl.), 145, 242–245 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Aalseth, D. Anderson, R. Arthur, et al., “The proposed Majorana Ge-76 double-beta decay experiment,” ibid., 138, 217–220 (2005).CrossRefGoogle Scholar
  9. 9.
    G. V. Gorshkov, V. A. Zyabkin, and O. S. Tsvetkov, Natural Neutrino Background of the Atmosphere and the Earth’s Crust, Atomizdat, Moscow (1966).Google Scholar
  10. 10.
    A. A. Vasenko, Yu. N. Vereshchagin, I. V. Kirpichnikov, et al., “Apparatus for searching for 2β-decay based on a 76Ge-enriched Ge(Li) detector,” Prib. Tekh. Éksp., 2, 56–63 (1989).Google Scholar
  11. 11.
    F. Avignone, R. Brodzinski, R. Collar, et al., “Theoretical and experimental investigation of cosmogenic radioisotope production in germanium,” Nucl. Phys. B (Proc. Suppl.), 28A, 280–285 (1992).CrossRefGoogle Scholar
  12. 12.
    N. M. Sobolevskii, Computer Investigations of the Interactions of Hadrons and Nuclei with Complex Media, Doctoral Dissertation in Physical-Mathematical Sciences, Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (2004).Google Scholar
  13. 13.
    A. V. Dementyev and N. M. Sobolevsky, “SHIELD — universal Monte Carlo hadron transport code: scope and application,” Rad. Measurem., 39, 553–557 (1999).CrossRefGoogle Scholar
  14. 14.
    V. N. Kornoukhov, “New requirements for enriched isotopes for experiments on studying neutrinoless double beta decay (GERDA experiment),” in: 10th International Scientific Conference on Physicochemical Processes in the Selection of Atoms and Molecules, Moscow (2005), pp. 204–207 (TSNIIatominform).Google Scholar
  15. 15.
    J. Ziegler and J. Sellschop, “The background in detectors caused by sea level cosmic rays,” Nucl. Instrum. Methods, 191, 419–424 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. N. Shubin
    • 1
  • A. N. Gilev
    • 1
  • D. B. Kononov
    • 1
  • A. A. Mis’kov
    • 1
  • E. A. Nikitina
    • 1
  • G. M. Skorynin
    • 1
  • I. R. Barabanov
    • 2
  • L. B. Bezrukov
    • 2
  • A. N. Denisov
    • 2
  • N. M. Sobolevskii
    • 2
  • S. G. Belogurov
    • 3
  • V. N. Kornoukhov
    • 3
  • M. Altman
    • 4
  • A. Caldwell
    • 4
  1. 1.Industrial Association Élektrokhimicheskii ZavodRussia
  2. 2.Institute of Nuclear ResearchRussian Academy of SciencesRussia
  3. 3.State Science Center of the Russian Federation — Institute of Theoretical and Experimental PhysicsRussia
  4. 4.Max Planck Institute of PhysicsGermany

Personalised recommendations