Skip to main content
Log in

Transverse Gradients of Longitudinal Magnetic Field in Active Regions with Different Levels of Flare Productivity. I. Calculation Methods and Dynamics of Selected Parameters

  • Published:
Astrophysics Aims and scope

This paper is a study of the dynamics of the parameters describing the transverse component of the gradient of the longitudinal magnetic field ∇ Bz in active regions (AR) with different levels of flare productivity. Data obtained by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) has been used to analyze 75 ARs in the 24-th cycle of solar activity. ∇ Bz has been calculated using two approaches, modern and classical. In each case the parameters describing the quantity ∇ Bz in the AR are determined. For the modern approach, this includes the average of ∇ Bz over the AR, <∇ Bz> and the average value of ∇ Bz in the neighborhood of the point with its maximum value, <max ∇ Bz>; for the classical approach, the maximum value of ∇ Bz between pairs of spots in the AR, <max ∇ Bz>. The dynamics of the chosen parameters are studied over the time of monitoring each of the regions of the analyzed sample. It is shown that: 1. the spread in values of ∇ Bz is small (for the overwhelming majority of studied regions it lies within a range of 0.08-0.12 G·km-1) and differs little for regions with low and high flare activity. 2. The numerical values of the parameter max(∇ Bz) and its dynamics in the overwhelming majority of examined cases are greater in regions with a higher level of flare activity. 3. The numerical values of the parameter max(∇ Bz) and its dynamics are greater in regions with higher levels of flare activity. 4. In the AR NOAA 11283 a stable rise in the magnitude of max (∇ Bz)sp was detected for approximately 19 h before the development of the first of a series of flares in high x-ray classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Severnyi, Some Problems in the Physics of the Sun [in Russian], Nauka, Moscow (1988).

  2. G. D. Fleishman and A. A. Pevtsov, Electric Currents in Geospace and Beyond, p. 43 (2018).

  3. G. E. Hale, Astrophys. J. 28, 315 (1908).

    Article  ADS  Google Scholar 

  4. H. W. Babcock, Astrophys. J. 118, 387 (1953).

    Article  ADS  Google Scholar 

  5. N. S. Nikulin, A. B. Severnyi, and V. E. Stepanov, Izv. Krymsk. Astrofiz. Observ. 19 (3), (1958).

  6. B. A. Ioshpa and V. N. Obridko, Solnechnye dannye 3, 54 (1965).

    Google Scholar 

  7. R. N. Ikhsanov and Yu. P. Platonov, Solnechnye dannye 11, 78 (1967).

    Google Scholar 

  8. D. A. Kuznetsov, G. V. Kuklin, and V. E. Stepanov, Results of observations and studies during the period of the MGSS [in Russian] 1, 80 (1966.).

  9. R. H. Lee, R. M. Rust, and H. Zirin, Applied Optics IP 4, 1081 (1965).

    Article  ADS  Google Scholar 

  10. W. C. Livingston, Astrophys. J. 153, 929 (1968).

    Article  ADS  Google Scholar 

  11. A. B. Severnyi, Astron. zh. 33, 74 (1956).

    Google Scholar 

  12. A. B. Severnyi, Astron. zh. 34, 684 (1957).

    ADS  Google Scholar 

  13. A. V. Bruns, N. S. Nikulin, and A. B. Severnyi, Izv. Krymsk. Astrofiz. Observ. 33. 80 (1965).

    Google Scholar 

  14. N. S. Nikulin, Izv. Krymsk. Astrofiz. Observ. 36, 76 (1967).

    Google Scholar 

  15. J. L. Leroy, Ann. Astrophys. 25, 127 (1962).

    ADS  Google Scholar 

  16. A. B. Severnyi, Izv. Krymsk. Astrofiz. Observ. 33, 3 (1965).

    Google Scholar 

  17. B. A. Ioshpa and É. I. Mogilevskii, Soln. Aktivnost’ 2, 118 (1965).

    Google Scholar 

  18. V. A. Kotov, Izv. Krymsk. Astrofiz. Observ. 41-42, 67 (1970).

    ADS  Google Scholar 

  19. E. A. Baranovskii and V. E. Steppanov, Izv. Krymsk. Astrofiz. Observ. 21, 180 (1959).

    Google Scholar 

  20. A. B. Severnyi, Izv. Krymsk. Astrofiz. Observ. 20, 22 (1958).

    ADS  Google Scholar 

  21. A. B. Severnyi, Izv. Krymsk. Astrofiz. Observ. 22, 12 (1960).

    Google Scholar 

  22. S. I. Gopasyuk, M. B. Ogir’, A. B. Severnyi, et al., Izv. Krymsk. Astrofiz. Observ. 29, 15 (1963).

  23. A. M. Zvereva and A. B. Severnyi, Izv. Krymsk. Astrofiz. Observ. 41-42, 97 (1970).

    ADS  Google Scholar 

  24. Y. Avignon, M. J. Martres, and M. Pick, Ann. Astrophys. 27, 23 (1964).

    ADS  Google Scholar 

  25. C. Caroubalos, Ann. Astrophys. 27, 333 (1964).

    ADS  Google Scholar 

  26. A. B. Severny, N. N. Stepanyan, and N. V. Steshenko, NOAA Solar-Terrest. Prediction Proc. 1, 72 (1979).

    Google Scholar 

  27. A. T. Altyntsev, B. G. Banin, G. V. Kuklin, et al., Solar Flares [in Russian], Nauka, Moscow (1982).

  28. P. H. Scherrer, J. Schou, R. I. Bush at al., Solar Phys. 275, 207 (2012).

  29. W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin, Solar Phys. 275, 3 (2012).

    Article  ADS  Google Scholar 

  30. T. Kosugi, K. Matsuzaki, T. Sakao, et al., Solar Phys. 243, 3 (2007).

    Article  ADS  Google Scholar 

  31. Yu. A. Fursyak, Izv. Krymsk. Astrofiz. Observ. 118, 39 (2022).

    Google Scholar 

  32. M. B. Bobra, X. Sun, J. T. Hoeksema, et al., Solar Phys. 289, 3549 (2014).

    Article  ADS  Google Scholar 

  33. Yu. A. Fursyak, V. I. Abramenko, and A. S. Kutsenko, Astrophysics 63, 260 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fursyak.

Additional information

Translated from Astrofizika, Vol. 66, No. 4, pp. 571-590 (November 2023)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fursyak, Y.A. Transverse Gradients of Longitudinal Magnetic Field in Active Regions with Different Levels of Flare Productivity. I. Calculation Methods and Dynamics of Selected Parameters. Astrophysics 66, 532–549 (2023). https://doi.org/10.1007/s10511-024-09808-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-024-09808-3

Keywords

Navigation