Skip to main content
Log in

Renyi Holographic Dark Energy and Its Behaviour in f(G) Gravity

  • Published:
Astrophysics Aims and scope

In this work, the Renyi holographic dark energy (RHDE) and its behaviour has been explored with the anisotropic and spatially homogeneous Bianchi type-I Universe in the framework of f (G) gravity. We use IR cutoff as the Hubble and Granda-Oliveros (GO) horizons. To find a consistent solutions of the field equations of the models, it is assumed that the deceleration parameter is defined in terms of function of Hubble parameter H. With reference to current cosmological data, the behaviors of the cosmological parameters relating to the dark energy model are evaluated and their physical significance is examined. It is observed that for both the models, the equation of state parameter approaches to -1 at late times. However, the RHDE model with the Hubble horizon exhibits stability from the squared sound speed, but the RHDE model with the GO horizon exhibits instability. In both the models, deceleration parameter and statefinder diagnostic confirm the accelerated expansion of the Universe and also correspond to the ΛCDM model at late times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Perlmutter et al., Astrophys. J., 517, 565, 1999.

    Article  ADS  Google Scholar 

  2. A. G. Riess et al., Astron. J., 116, 1009, 1998.

    Article  ADS  Google Scholar 

  3. Z. Y. Huang et al., JCAP, 0605, 013, 2006.

    Article  ADS  Google Scholar 

  4. D. J. Eisenstein et al., Astrophys. J., 633, 560, 2005.

    Article  ADS  Google Scholar 

  5. C. Fedeli et al., Astron. Astrophys., 500, 667, 2009.

    Article  ADS  Google Scholar 

  6. T. Koivisto, D. F. Mota, Phys. Rev. D, 73, 083502, 2006.

    Article  ADS  MathSciNet  Google Scholar 

  7. S. M. Carroll, Phys. Rev. Lett., 81, 3067, 1998.

    Article  ADS  Google Scholar 

  8. M. S. Turner, Making sense of the new cosmology, in: 2001: A Spacetime Odyssey, p. 180196, 2002.

  9. R. R. Caldwell, Phys. Lett. B, 545, 2329, 2002.

    Article  Google Scholar 

  10. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D, 62, 023511, 2000.

    Article  ADS  Google Scholar 

  11. T. Padmanabhan, Phys. Rev. D, 66, 021301, 2002.

    Article  ADS  Google Scholar 

  12. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B, 511, 265268, 2001.

    Article  Google Scholar 

  13. I. Zlatev, L. Wang, P. J. Steinhardt, Phys. Rev. Lett., 82, 896, 1999.

    Article  ADS  Google Scholar 

  14. R. Myrzakulov, Eur. Phys. J. C, 71, 18, 2011.

    Article  Google Scholar 

  15. E. V. Linder, Phys. Rev. D, 81, 127301, 2010.

    Article  ADS  Google Scholar 

  16. M. De Laurentis, M. Paolella, S. Capozziello, Phys. Rev. D, 91, 083531, 2015.

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Harko, F. S. Lobo, S. I. Nojiri et al., Phys. Rev. D, 84, 024020, 2011.

    Article  ADS  Google Scholar 

  18. S. Nojiri, S. D. Odintsov, O. G. Gorbunova, J. Phys. A, Math. Gen., 39, 6627, 2006.

    Article  ADS  Google Scholar 

  19. G. Cognola, E. Elizalde, S. Nojiri et al., Phys. Rev. D, 73, 084007, 2006.

    Article  ADS  Google Scholar 

  20. S. Nojiri, S. D. Odintsov, Phys. Rept., 505, 59-144, 2011.

    Article  ADS  Google Scholar 

  21. H. M. Sadjadi, Phys. Scr., 83, 055006, 2011.

    Article  ADS  Google Scholar 

  22. K. Bamba, S. D. Odintsov, L. Sebastiani et al., Eur. Phys. J. C, 67, 295310, 2010.

    Article  Google Scholar 

  23. R. Myrzakulov, D. Sáez-Gómez, A. Tureanu, Gen. Relativ. Gravit., 43, 16711684, 2011.

    Article  Google Scholar 

  24. A. Jawad, S. Chattopadhyay, A. Pasqua, Eur. Phys. J. Plus, 128, 88, 2013.

    Article  Google Scholar 

  25. M. F. Shamir, Astrophys. Space Sci., 361, 147, 2016.

    Article  ADS  Google Scholar 

  26. M. Sharif, H. I. Fatima, Astrophys. Space Sci., 353, 259265, 2014.

    Google Scholar 

  27. A. Y. Shaikh, S. V. Gore, S. D. Katore, New Astron., 80, 101420, 2020.

    Article  Google Scholar 

  28. S. Nojiri, S. D. Odintsov, V. K. Oikonomou, Phys. Rept., 692, 1-104, 2017.

    Article  ADS  Google Scholar 

  29. M. Koussour, H. Filali, S. H. Shekh et al., Nucl. Phys. B, 978, 115738, 2022.

    Article  Google Scholar 

  30. M. Li, Phys. Lett. B, 603, 1, 2004.

    Article  ADS  Google Scholar 

  31. L. Susskind, J. Math. Phys., 36, 6377, 1995.

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett., 82, 4971, 1999.

    Article  ADS  MathSciNet  Google Scholar 

  33. Z. K. Gao et al., Phys. Rev. D, 74, 127304, 2006.

    Article  ADS  Google Scholar 

  34. L. N. Granda, A. Oliveros, Phys. Lett. B, 669, 275, 2008.

    Article  ADS  Google Scholar 

  35. L. N. Granda, A. Oliveros, Phys. Lett. B, 671, 199, 2009.

    Article  ADS  Google Scholar 

  36. H. Wei, R. G. Cai, Phys. Lett. B, 660, 113, 2009.

    Article  ADS  Google Scholar 

  37. W. Zimdahl, D. Pavon, Quantum Grav., 24, 5461, 2007.

    Article  ADS  Google Scholar 

  38. L. Xu, Y. Wang, J. Cosmol. Astropart. Phys., 06, 002, 2010.

    Article  ADS  Google Scholar 

  39. X. Zhang, Phys. Rev. D, 79, 103509, 2009.

    Article  ADS  Google Scholar 

  40. Y. Wang, L. Xu, Phys. Rev. D, 81, 083523, 2010.

    Article  ADS  Google Scholar 

  41. I. Duran, D. Pavon, Phys. Rev. D, 83, 023504, 2011.

    Article  ADS  Google Scholar 

  42. S. Nojiri, S. D. Odintsov, Gen. Relativ. Grav., 38, 1285, 2006.

    Article  ADS  Google Scholar 

  43. S. Nojiri et al., Phys. Lett. B, 797, 134829, 2019.

    Article  MathSciNet  Google Scholar 

  44. C. Tsallis, L. J. L. Cirto, Eur. Phys. J. C, 73, 2487, 2013.

    Article  ADS  Google Scholar 

  45. A. S. Jahromi et al., Phys. Lett. B, 780, 21, 2018.

    Article  ADS  MathSciNet  Google Scholar 

  46. H. Moradpour et al., Eur. Phys. J. C., 78, 829, 2018.

    Article  ADS  Google Scholar 

  47. H. Moradpour, Bonilla et al., Phys. Rev. D, 96(12), 123504, 2017.

  48. H. Moradpour, Implications, Int. J. Theor. Phys., 55(9), 4176, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Komatsu, Eur. Phys. J. C, 77(4), 229, 2017.

    Article  ADS  Google Scholar 

  50. S. Ghaffari, A. H. Ziaie et al., Phys. Lett. A, 35(1), 1950341, 2020.

    MathSciNet  Google Scholar 

  51. U. Y. D. Prasanthi, Y. Aditya, Results Phys., 17, 103101, 2020.

    Article  Google Scholar 

  52. U. Y. D. Prasanthi, Y. Aditya, Phys. Dark Universe, 31, 100782, 2021.

    Article  Google Scholar 

  53. S. H. Shekh, Phys. Dark Universe, 33, 100850, 2021.

    Article  Google Scholar 

  54. S. Nojiri, S. D. Odintsov, V. K. Oikonomou et al., Phys. Rev. D, 102, 023540, 2020.

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Nojiri, S. D. Odintsov, T. Paul, Phys. Lett. B, 825, 136844, 2022.

    Article  Google Scholar 

  56. M. S. Singh, S. S. Singh, New Astron., 72, 36, 2019.

    Article  ADS  Google Scholar 

  57. M. S. Singh, S. S. Singh, Gravit. Cosmol., 25, 8289, 2019.

    Article  Google Scholar 

  58. S. S. Singh, L. A. Devi, New Astron., 90, 101656, 2022.

    Article  Google Scholar 

  59. M. K. Alam, S. S. Singh, L. A. Devi, Adv. High Energy Phys., 2022, 5820222, 2022.

    Article  Google Scholar 

  60. S. Nojiri, S. D. Odintsov, Phys. Lett. B, 631(1-2), 12-6, 2005.

    Google Scholar 

  61. K. S. Thorne, Astrophys. J., 148, 51, 1967.

    Article  ADS  Google Scholar 

  62. J. Kristian, R. K. Sachs, Astrophys. J., 143, 379, 1966.

    Article  ADS  MathSciNet  Google Scholar 

  63. C. B. Collins, Phys. Lett. A, 60, 397, 1977.

    Article  ADS  MathSciNet  Google Scholar 

  64. R. K. Tiwari, D. Sofuo ğ l u, V. K. Dubey, Int. J. Geom. Methods Mod. Phys., 17, 2050187, 2020.

  65. N. Aghanim et al., (Planck Collaboration), Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641, A6, 2020.

    Google Scholar 

  66. A. Jawad et al., Symmetry, 10, 635, 2018.

    Article  ADS  Google Scholar 

  67. V. Sahni, T. D. Saini, A. A. Starobinsky et al., JETP Lett., 77, 201206, 2003.

    Article  Google Scholar 

  68. S. Nojiri, S. D. Odintsov, T. Paul, Symmetry, 13, 928, 2021.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Alam.

Additional information

Published in Astrofizika, Vol. 66, No. 3, pp. 415-440 (August 2023)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.K., Singh, S.S. & Devi, L.A. Renyi Holographic Dark Energy and Its Behaviour in f(G) Gravity. Astrophysics 66, 383–410 (2023). https://doi.org/10.1007/s10511-023-09798-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-023-09798-8

Keywords

Navigation