Skip to main content
Log in

Electric Current Systems in Active Regions at a Late Stage of Evolution and Their Role in the Processes of Stabilization/Destabilization of Sunspots

  • Published:
Astrophysics Aims and scope

Data from the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamic Observatory (SDO) on the components of the magnetic field vector in the sun’s photosphere are obtained for 46 active regions (AR) in the final stage of evolution to calculate the magnitudes of the horizontal, vertical, and large-scale electric current at the solar photosphere level. In each case the dynamics of the parameters of the electric current over the time the regions are within ±35° from the central solar meridian was studied. The parameters of the electric current with the decay rate of the magnetic flux in a sunspot was compared. The following results are obtained: (1) a direct relationship between the value of the average unsigned density of the local vertical electric currents and the decay rate of the magnetic flux in a spot with a correlation coefficient of k = 0.56 was found. (2) A nonzero large-scale electric current only in ARs with a relatively low decay rate of the magnetic flux in a sunspot (not exceeding the value 6.0∙1019 Mx h-1) was detected. Thus, a large-scale electric current can have a stabilizing effect on a sunspot without being the only mechanism for stabilizing sunspots, since only for the 37% of the ARs in the analyzed sample for which decay rate of the magnetic flux in a sunspot was below 6.0∙1019 Mx h-1, its value, taking into account the computational errors is nonzero. (3) A statistical analysis also indicates stabilization of sunspots by the inductive component of the annular horizontal electrical current described by Faraday’s law and caused by a change in the magnetic flux of the sunspot over time. A correlation coefficient k = 0.42 between the average value of the horizontal electric current density square in the annular structure around the sunspot and the decay rate of the magnetic flux was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Cowling, Mon. Not. Roy. Astron. Soc., 106, 218, 1946.

    Article  ADS  Google Scholar 

  2. N. R. Sheeley and A. Bhatnagar, Solar Phys., 19, 338, 1971.

    Article  ADS  Google Scholar 

  3. F. Meyer, H. U. Schmidt, N. O. Weiss, et al., Mon. Not. Roy. Astron. Soc., 169, 35, 1974.

    Article  ADS  Google Scholar 

  4. A. A. Solov’ev, Byulletin Solnechnye Dannye Akademie Nauk USSR, 7, 73, 1976.

    Google Scholar 

  5. H. Baltasar, M. Schussler, and H. Wohl, Solar Phys., 76, 21, 1982.

    Article  ADS  Google Scholar 

  6. R. Muller and B. Mena, Solar Phys., 112, 295, 1987.

    Article  ADS  Google Scholar 

  7. A. Nye, D. Bruning, and B. J. Labonte, Solar Phys., 115, 251, 1988.

    Article  ADS  Google Scholar 

  8. W. D. Pesnell, B. J. Thompson, and, P. C. Chamberlin, Solar Phys., 275, 3, 2012.

    Article  ADS  Google Scholar 

  9. T. Kosugi, K. Matsuzaki, T. Sakao, et al., Solar Phys., 243, 3, 2007.

    Article  ADS  Google Scholar 

  10. P. R. Goode, C. J. Denker, L. I. Didkovsky et al., Journal of The Korean Astronomical Society, 36, 125, 2003.

    Article  Google Scholar 

  11. M. P. Rast, N. Bello González, L. Bellot Rubio, et al., eprint arXiv:2008.08203, 2020.

  12. A. A. Solov’ev, Soviet Astron., 35, 83, 1991.

    ADS  Google Scholar 

  13. L. M. Zeleniy and A. V. Milovanov, Soviet Astron. Lett., 18, 249, 1993.

    ADS  Google Scholar 

  14. Yu. E. Litvinenk and M. S. Wheatland, Astrophys. J., 800, 130, 2015.

    Article  ADS  Google Scholar 

  15. V. Bumba, Bull. Astr. Inst. Czechosl. 14, 91, 1963.

    ADS  Google Scholar 

  16. V. Martínez Pillet, F. Moreno-Insertis, and M. Vazquez, Astron. Astrophys., 274, 521, 1993.

    ADS  Google Scholar 

  17. K. Petrovay, and L. van Driel-Gesztelyi, Sol. Phys., 176, 249, 1997.

    Article  ADS  Google Scholar 

  18. F. Meyer, H. U. Schmidt, N. O. Weiss, et al., Mon. Not. Roy. Astron. Soc., 169, 35, 1974.

    Article  ADS  Google Scholar 

  19. S. D. Ivanov and V. P. Maksimov, Soviet Astron. Lett., 4, 127, 1978.

    Google Scholar 

  20. V. N. Krivodubskii, Byulletin Solnechnye Dannye Akademie Nauk USSR, 11, 51, 1983.

    ADS  Google Scholar 

  21. R. Muller and B. Mena, Solar Phys., 112, 295, 1987.

    Article  ADS  Google Scholar 

  22. S. K. Solanki, Astron. Astrophys. Review, 11, 153, 2003.

    Article  ADS  Google Scholar 

  23. M. Kubo, B. W. Lites, T. Shimizu, et al., Astrophys. J., 686, 1447, 2008.

    Article  ADS  Google Scholar 

  24. G. W. Simon and R. B. Leighton, Astrophys. J., 140, 1120, 1964.

    Article  ADS  Google Scholar 

  25. K. Petrovay and F.Moreno-Insertis, Astrophys. J., 485, 398, 1997.

    Article  ADS  Google Scholar 

  26. N. R. Sheeley, Solar. Phys., 9, 347, 1969.

    Article  ADS  Google Scholar 

  27. R. Harvey and J. Harvey, Solar Phys., 28, 61, 1973.

    Article  ADS  Google Scholar 

  28. V. Martinez Pillet, Astron. Nachr., 323, No. 3/4, 342, 2002.

    Article  ADS  Google Scholar 

  29. M. Kubo, and T. Shimizu, S. Tsuneta, Astrophys. J., 671, 990, 2007.

    Article  ADS  Google Scholar 

  30. A. A. Solov’ev, Byulletin Solnechnye Dannye Akademie Nauk USSR, 1, 73, 1984.

    ADS  Google Scholar 

  31. A. A. Solov’ev and E. Kirichek, Astrophys. Space Sci., 352, 23, 2014.

    Article  ADS  Google Scholar 

  32. G. Lustig and H. Wöhl, Astron. Astrophys., 278, 637, 1993.

    ADS  Google Scholar 

  33. H. Strecker, W. Schmidt, R. Schlichenmaier, et al, Astron. Astrophys., 649, A123, 2021.

    Article  ADS  Google Scholar 

  34. A. A. Solov’ev, Soviet Astronomy, 20, 75, 1976.

    ADS  Google Scholar 

  35. H. C. Spruit, in: NASA. Goddard Space Flight Center. The Sun as a Star, 385, 1981.

  36. V. P. Maytlis and H. R. Strauss, Solar Phys., 145, 111, 1993.

    Article  ADS  Google Scholar 

  37. Yu. A. Fursyak, A. A. Plotnikov, and V. I. Abramenko, Izv. Krymsk. Astrofiz. obs., 117, 29, 2021.

    Google Scholar 

  38. P. H. Scherrer, J. Schou, R. I. Bush, et al., Solar Phys., 275, 207, 2012.

    Article  ADS  Google Scholar 

  39. M. G. Bobra, X. Sun, J. T. Hoeksema, et al., Solar Phys., 289, 3549, 2014.

    Article  ADS  Google Scholar 

  40. A. V. Zhukova, Izv. Krymsk. Astrofiz. obs., 114, 74, 2018.

    Google Scholar 

  41. V. I. Abramenko, A. V. Zhukova, A. and S. Kutsenko, Geomagnetism and Aeronomy, 58, 1159, 2018.

  42. V. I. Abramenko, Mon. Not. Roy. Astron. Soc., 507, 3698, 2021.

    Article  ADS  Google Scholar 

  43. A. A. Plotnikov and A. S. Kutsenko, XXIV Annual All-Russian Conference “Solar and Solar-Earth Physics-2020” GAO RAN, St. Petersburg, Collected Abstracts, 259, 2020.

  44. A. A. Plotnikov and A. S. Kutsenko, “16-th Annual Conf. “Physics of Plasmas in the Solar System,” Moscow, IKI RAN, Abstracts of Talks, 25, 2021.

  45. A. A. Plotnikov, V. I. Abramenko, and A. S. Kutsenko, Mon. Not. Roy. Astron. Soc., 2022 (in print).

  46. Yu. A. Fursyak, and V.I.Abramenko, Astrophysics, 60, 544, 2017.

    Article  ADS  Google Scholar 

  47. Yu. A. Fursyak, Geomagnetism and Aeronomy, 58, 1129, 2018.

    Article  ADS  Google Scholar 

  48. Yu. A. Fursyak, A. S. Kutsenko, and V. I. Abramenko, Solar Phys., 295, id. 19, 2020.

  49. E. N. Parker, Cosmical Magnetic Fields. Part 1, Oxford: Clarendon Press, 1979.

  50. E. N. Parker, Conversations on electric and magnetic field in the Cosmos, Princeton: Princeton Univ. Press, 2007.

  51. A. A. Solov’ev and E. A. Kirichek, Mon. Not. Roy. Astron. Soc., 505, 4406, 2021.

    Article  ADS  Google Scholar 

  52. A. A. Solov’ev Astron. zh. 88, 1111, 2011.

  53. X. Sun, J. T. Hoeksema, Y. Liu, et al., Astrophys. J., 748, id. 77, 2012.

    Article  ADS  Google Scholar 

  54. Yu. A. Fursyak, V. I. Abramenko, and A. S. Kutsenko, Astrophysics, 63, 260, 2020.

    Article  ADS  Google Scholar 

  55. N. Seehafer, Solar Phys., 125, 219, 1990.

    Article  ADS  Google Scholar 

  56. A. A. Pevtsov, R. C. Canfield, and T. R. Metcalf, Astrophys. J., 425, L117, 1994.

    Article  ADS  Google Scholar 

  57. V. I. Abramenko, T. Wang, and V. B. Yurchishin, Solar Phys. 168, 75, 1996.

    Article  ADS  Google Scholar 

  58. S. B. Pikel’ner, Foundations of Cosmic Electrodynamics [in Russian], Nauka, Moscow (1966).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fursyak.

Additional information

Translated from Astrofizika, Vol. 65, No. 3, pp. 397-418 (August 2022)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fursyak, Y.A., Plotnikov, A.A. Electric Current Systems in Active Regions at a Late Stage of Evolution and Their Role in the Processes of Stabilization/Destabilization of Sunspots. Astrophysics 65, 384–403 (2022). https://doi.org/10.1007/s10511-022-09748-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-022-09748-w

Keywords

Navigation