Skip to main content
Log in

Halo Effect on Bar Rotation in Galaxies

  • Published:
Astrophysics Aims and scope

The effect of a massive gravitating halo on the rotation of an ellipsoidal bar in disk galaxies is studied. The method is based on calculating the moment of forces between a bar and a halo using a function of their mutual gravitational energy. Two models are examined to test the new method: a simple variant with uniform components and a more complex variant in which the halo is represented by a layered-heterogeneous ellipsoid with a parabolic density law. For both models expressions are obtained for the mutual gravitational energy of the bar and the halo, the Lagrangian is constructed, and differential equations for the nonlinear rotational oscillations of the bar are derived. These equations describe the rotation of a bar with a variable angular velocity. The frequencies and periods of the librations of the angular velocity of the bar are found both in the general nonlinear case and in the approximation of harmonic oscillations. It is found that taking the inhomogeneity of the halo into account can significantly (by roughly a factor of 2) increase the period of these oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Sellwood and A. Wilkinson, Reports on Progress in Phys. 56, 173 (1993).

    Article  ADS  Google Scholar 

  2. E. Athanassoula, Mon. Not. Roy. Astron. Soc. 341, 117903 (2003).

    Article  Google Scholar 

  3. M. Martig, F. Bournaud, D. J. Croton, et al., Astrophys. J. 756, 26 (2012).

    Article  ADS  Google Scholar 

  4. K. Kraljic, F. Bournaud, and M. Martig, Astrophys. J. 757, 60 (2012).

    Article  ADS  Google Scholar 

  5. T. Kim, E. Athanassoula, K. Sheth, et al., Astrophys. J. 922, 196 (2021).

    Article  ADS  Google Scholar 

  6. K. Sheth, et al., Astrophys. J. 675, 1141 (2008).

    Article  ADS  Google Scholar 

  7. B. Cervantes Sodi, Astrophys. J. 835:80, 9 (2017).

  8. B. P. Kondratyev and E. N. Kireeva, Baltic Astron. 25, 247 (2016).

    ADS  Google Scholar 

  9. J. P. Ostriker and P. J. E. Peebles, Astrophys. J. 186, 467 (1973).

    Article  ADS  Google Scholar 

  10. M. G. Abadi, J. F. Navarro, M. Fardal, et al., Mon. Not. Roy. Astron. Soc. 407, 435 (2010).

    Article  ADS  Google Scholar 

  11. I. Minchev, B. Famaey, A. C. Quillen, et al., Astron. Astrophys. 548, A126 (2012).

    Article  Google Scholar 

  12. L. Hernquist and M. D. Weinberg, Astrophys. J. 400, 80 (1992).

    Article  ADS  Google Scholar 

  13. V. P. Debattista and J. A. Sellwood, Astrophys. J. 543, 704 (2000).

    Article  ADS  Google Scholar 

  14. J. A. Sellwood, Astrophys. J. 637, 567 (2006).

    Article  ADS  Google Scholar 

  15. A. Collier, Mon. Not. Roy. Astron. Soc. 492, 2241 (2020).

    Article  ADS  Google Scholar 

  16. A. Kumar, M. Das, and K. S. Kumar, Mon. Not. Roy. Astron. Soc. 509, 1262 (2022).

    Article  ADS  Google Scholar 

  17. S. Tremaine and M. D. Weinberg, Astrophys. J. 282, L5-L7 (1984).

    Article  ADS  Google Scholar 

  18. R. Chiba and R. Schönrich, Mon. Not. Roy. Astron. Soc. 505, 2412 (2021).

    Article  ADS  Google Scholar 

  19. G. S. Bisnovatyi-Kogan, Astrophysics 64, 219 (2021).

    Article  ADS  Google Scholar 

  20. J. H. Knapen, I. Shlosman, and R. F. Peletier, A subarcsecond resolution near-infrared study of Seyfert and “normal” galaxies: II. Morphology 529, 93 (2000).

  21. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Yale University Press, New Haven (1969).

    MATH  Google Scholar 

  22. B. P. Kondratyev, Sov. Astron. 26, 279 (1982).

    ADS  Google Scholar 

  23. B. P. Kondratyev, The Dynamics of Ellipsoidal Gravitating Figures [in Russian], Nauka, Moscow (1989).

  24. B. P. Kondratyev, Potential Theory. New Methods and Problems with Solutions [in Russian], Mir, Moscow (2007).

  25. B. P. Kondratyev, Solar Syst. Res. 46, 352 (2014).

    ADS  Google Scholar 

  26. E. V. Polyachenko, Astron. Lett. 39, 72 (2013).

    Article  ADS  Google Scholar 

  27. A. T. Bajkova and V. V. Bobylev, Astron. Rep. 65, 737 (2021).

    Article  ADS  Google Scholar 

  28. B. P. Kondratyev and V. S. Kornoukhov, Astron. Rep. 64, 434 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Kondratyev.

Additional information

Translated from Astrofizika, Vol. 65, No. 3, pp. 357-370 (August 2022)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, B.P., Kireeva, E.N., Kornoukhov, V.S. et al. Halo Effect on Bar Rotation in Galaxies. Astrophysics 65, 345–360 (2022). https://doi.org/10.1007/s10511-022-09745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-022-09745-z

Keywords

Navigation