Skip to main content
Log in

Quark Matter in the NJL Model with a Vector Interaction and the Structure of Hybrid Stars

  • Published:
Astrophysics Aims and scope

The properties of hadron-quark hybrid stars are studied when the quark phase is described in terms of a local SU(3) Nambu-Jona-Lasinio (NJL) model taking into account the contribution of the vector and axial-vector interaction between the quarks, and the hadronic phase, in the relativistic mean field (RMF) model. For different values of the vector coupling constant GV, the equations of state of the quark matter are calculated and the parameters of the hadron-quark phase transition are determined under the assumption that the phase transition takes place in accordance with Maxwell’s construction. It is shown that for a larger vector coupling constant, the equation of state of the quark matter will be “stiffer” and the coexistence pressure P0 of the phases will be greater. Using the resulting hybrid equations of state, the TOV equations are integrated numerically and the mass and radius of the compact star are determined for different values of the central pressure Pc. It is shown that when GV is larger, the maximum mass of the compact star will be larger and thereby, the radius of the configuration with maximum mass will be smaller. Questions of the stability of hybrid stars are also discussed. It is shown that in terms of the model examined here, for all values of the vector coupling constant, a hybrid star with an infinitely small quark core is stable. These results are compared with recent measurements of the mass and radius of the pulsars PSR J0030+0451 and PSR J0740+6620, carried out at the International Space Station with the NICER X-ray telescope. A comparison of the theoretical results with observational data does not exclude the possibility of quark deconfinement in the interiors of compact stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Demorest, T. Pennucci, S. M. Ransom, et al., Nature 467, 1081 (2010).

    Article  ADS  Google Scholar 

  2. J. Antoniadis, P. C. C. Freire, N. Wex, et al., Science 340, 6131 (2013).

    Article  ADS  Google Scholar 

  3. M. Miller, F. K. Lamb, A. Dittmann, et al., Astrophys. J. Lett. 887, L24 (2019).

    Article  ADS  Google Scholar 

  4. E. Fonseca, H. T. Cromartie, T. T. Pennucci, et al., Astrophys. J. Lett. 915, L12 (2021).

    Article  ADS  Google Scholar 

  5. M. C. Miller, F. K. Lamb, A. J. Dittmann, et al., Astrophys. J. Lett. 918, L28 (2021).

    Article  ADS  Google Scholar 

  6. K. Schertler, C. Greiner, J. Schaffner-Bielich, et al., Nucl. Phys. A 677, 463 (2000).

    Article  ADS  Google Scholar 

  7. G. F. Burgio, M. Baldo, P. K. Sahu, et al., Phys. Rev. C 66, 025802 (2002).

    Article  ADS  Google Scholar 

  8. G. V. Alaverdyan, A. R. Arutyunyan, and Yu. L. Vartanyan, Astrophysics 46, 361 (2003).

    Article  ADS  Google Scholar 

  9. G. V. Alaverdyan, A. R. Arutyunyan, and Yu. L. Vartanyan, Astrophysics 47, 52 (2004).

    Article  ADS  Google Scholar 

  10. B. K. Sharma, P. K. Panda, S. K. Patra, Phys. Rev. C 75, 035808 (2007).

    Article  ADS  Google Scholar 

  11. G. V. Alaverdyan, Astrophysics 52, 132 (2009.

    Article  ADS  Google Scholar 

  12. G. B. Alaverdyan, Gravit. Cosmol. 15, 5 (2009).

    Article  ADS  Google Scholar 

  13. A. G. Alaverdyan, G. B. Alaverdyan, and A. O. Chiladze, Int. J. Mod. Phys. D 19, 1557 (2010).

    Article  ADS  Google Scholar 

  14. G. B. Alaverdyan, Res. Astron. Astrophys. 10, 1255 (2010).

    Article  ADS  Google Scholar 

  15. R. Negreiros, V. A. Dexheimer, and S. Schramm, Phys. Rev. C 85, 035805 (2012).

    Article  ADS  Google Scholar 

  16. G. V. Alaverdyan and Yu. L. Vartanyan, Astrophysics 60, 563 (2017).

    Article  ADS  Google Scholar 

  17. S. Khanmohamadi, H. R. Moshfegh, and S. A. Tehrani, Phys. Rev. D 101, 023004 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Chodos, R. L. Jaffe, K. Johnson, et al., Phys. Rev. D 9, 3471 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

    Article  ADS  Google Scholar 

  20. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).

    Article  ADS  Google Scholar 

  21. U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).

    Article  ADS  Google Scholar 

  22. T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).

    Article  ADS  Google Scholar 

  23. P. Rehberg, S. P. Klevansky, and J. Hüfner, Phys. Rev. C 53, 410 (1996).

    Article  ADS  Google Scholar 

  24. M. Buballa, Phys. Rep. 407, 205 (2005).

    Article  ADS  Google Scholar 

  25. M. K. Volkov and A. E. Radzhabov, UFN 176, 569 (2006).

    Article  Google Scholar 

  26. P. Wang, A. W. Thomas, and A. G. Williams, Phys. Rev. C 75, 045202 (2007).

    Article  ADS  Google Scholar 

  27. M. Alford and A. Sedrakian, Phys. Rev. Lett. 119, 161104 (2017).

    Article  ADS  Google Scholar 

  28. I. F. Ranea-Sandoval, M. G. Orsaria, G. Malfatti, et al., Symmetry 11, 425 (2019).

    Article  ADS  Google Scholar 

  29. J. J. Li, A. Sedrakian, and M. Alford, Phys. Rev. D 101, 063022 (2020).

    Article  ADS  Google Scholar 

  30. H. Pais, D. P. Menezes, and C. Providência, Phys. Rev. C 93, 065805 (2016).

    Article  ADS  Google Scholar 

  31. G. V. Alaverdyan and Yu. L. Vartanyan, Astrophysics 61, 483 (2018).

    Article  ADS  Google Scholar 

  32. J. D. Walecka, Ann. Phys. 83, 491 (1974).

    Article  ADS  Google Scholar 

  33. B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).

    Article  ADS  Google Scholar 

  34. G. B. Alaverdyan, Symmetry 13, 124 (2021).

    Article  ADS  Google Scholar 

  35. G. Lugones and A. G. Grunfeld, Universe 7, 493 (2021).

    Article  ADS  Google Scholar 

  36. J. Boguta, and A. R. Bodmer, Nuclear Physics A 292, 413 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  37. G. ‘t Hooft, Phys. Rev. Lett. 37, 8 (1976).

  38. N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).

    Article  ADS  Google Scholar 

  39. M. Ju, J. Hu, and H. Shen, Astrophys. J. 923, 250 (2021).

    Article  ADS  Google Scholar 

  40. Z. F. Seidov, Astron. zh. 15, 347 (1971).

    Google Scholar 

  41. R. C. Tolman, Phys. Rev. 55, 364 (1939).

    Article  ADS  Google Scholar 

  42. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  ADS  Google Scholar 

  43. G. Baym, H. Bethe, and Ch. Pethick, Nucl. Phys. A, 175, 255 (1971).

    Article  ADS  Google Scholar 

  44. E. Fonseca, T. T. Pennucci, J. A. Ellis, et al., Astrophys. J. 832, 167 (2016).

    Article  ADS  Google Scholar 

  45. Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, et al., Astrophys. J. Suppl. Ser. 235, 37 (2018).

    Article  ADS  Google Scholar 

  46. S. Chandrasekhar, Astrophys. J. 140, 417 (1964); Erratum in Astrophys. J. 140, 1342 (1964).

  47. J. P. Pereira, C. V. Flores, and G. Lugones, Astrophys. J. 860, 12 (2018).

    Article  ADS  Google Scholar 

  48. L. Tonetto, and G. Lugones, Phys. Rev. D, 101, 123029 (2020).

    Article  ADS  Google Scholar 

  49. J. P. Pereira, M. Bejger, L. Tonetto, et al., Astrophys. J. 910, 145 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Alaverdyan.

Additional information

Translated from Astrofizika, Vol. 65, No. 2, pp. 301-319, May 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaverdyan, G.B. Quark Matter in the NJL Model with a Vector Interaction and the Structure of Hybrid Stars. Astrophysics 65, 278–295 (2022). https://doi.org/10.1007/s10511-022-09737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-022-09737-z

Keywords

Navigation