Skip to main content
Log in

Disilicon Carbide (Si2C) in the Interstellar Medium

  • Published:
Astrophysics Aims and scope

The Si2C and SiC2 both are considered to play key role in the formation of the SiC dust grains in the atmosphere of the carbon-rich stars. The molecule of our interest Si2C has been detected in the envelope of the red supergiant star IRC+10216 first time. It is an asymmetric top molecule having electric dipole moment of 1 Debye along the b-axis of inertia. Because of zero nuclear spin of both the Carbon and Silicon atoms, it has only paratransitions. Using the given spectroscopic data (rotational and centrifugal distortion constants and electric dipole moment), for the para-Si2C, we have calculated energies of 200 lower rotational levels (having energy up to 217.8 cm-1) and the Einstein A and B coefficients for 867 radiative transitions between the levels. We have solved a set of 200 statistical equilibrium equations coupled with 867 equations of radiative transfer (Sobolev analysis), where the collisional rate coefficients are taken from a scaling law. Out of 867 radiative transitions, 13 transitions have been found showing weak MASER action, and 19 transitions showing anomalous absorption. One transition 808-717 is found to show both the MASER action as well as the anomalous absorption. These transitions in addition to the observed transitions may play important role in the identification of Si2C in the cosmic objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Snyder and D. Buhl, Astrophys. J., 189, L31, 1974.

    Article  ADS  Google Scholar 

  2. D. M. Goldhaber and A. L. Betz, Astrophys. J., 279, L55, 1984.

    Article  ADS  Google Scholar 

  3. P. Thaddeus, S. E. Cummins, and R. A. Linke, Astrophys. J., 283, L45, 1984.

    Article  ADS  Google Scholar 

  4. B. E. Turner, Astron. Astrophys., 183, L23, 1987.

    ADS  Google Scholar 

  5. J. Cernicharo, C. A. Gottlieb, M. Guélin et al., Astrophys. J., 341, L25, 1989.

    Article  ADS  Google Scholar 

  6. M. Ohishi, N. Kaifu, K. Kawaguchi et al., Astrophys. J., 345, L83, 1989.

    Article  ADS  Google Scholar 

  7. B. E. Turner, Astrophys. J., 45, L35, 1992.

    Article  ADS  Google Scholar 

  8. A. J. Apponi, M. C. McCarthy, C. A. Gottlieb et al., Astrophys. J., 516, L103, 1999.

  9. M. Guélin, M. Müller, L. Cernicharo et al., Astron. Astrophys., 363, L9, 2000.

    ADS  Google Scholar 

  10. M. Guélin, M. Müller, L. Cernicharo et al., Astron. Astrophys., 426, L49, 2004.

    Article  ADS  Google Scholar 

  11. M. Agundez, J. Cernicharo, and M. Guélin, Astron. Astrophys., A45, 570, 2014.

    Google Scholar 

  12. J. Cernicharo, M. C. McCarthy, C. A. Gottlieb et al., Astrophys. J. Lett., 806, L3, 2015.

    Article  ADS  Google Scholar 

  13. J. Cernicharo, M. Agundez, L. Velilla Prieto et al., Astron. Astrophys., 606, L5, 2017.

    Article  ADS  Google Scholar 

  14. E. Herbst, T. J. Millar, S. Wlodak et al., Astron. Astrophys., 222, 205, 1989.

    ADS  Google Scholar 

  15. V. Barone, P. Jensen, and C. Minichino, J. Mol. Spectrosc., 154, 252, 1992.

    Article  ADS  Google Scholar 

  16. E. E. Bolton, B. J. DeLeeuw, J. E. Fowler et al., J. Chem. Phys., 97, 5586, 1992.

    Article  ADS  Google Scholar 

  17. W. Gabriel, G. Chambaud, P. Rosmus et al., Astrophys. J., 398, 706, 1992.

    Article  ADS  Google Scholar 

  18. A. Spielfiedel, S. Carter, N. Feautrier et al., J. Phys. Chem., 100, 10055, 1996.

    Article  Google Scholar 

  19. M. C. McCarthy, J. H. Baraban, P. B. Changala et al., J. Phys. Chem. Lett., 6, 2107, 2015.

    Article  Google Scholar 

  20. Z. Kisiel, J. Demaison et al., Spectroscopy from Space. Kluwer, Dordrecht, 91, 2001.

  21. M. K. Sharma, M. Sharma, and S. Chandra, Astrophys. Space Sci., 362, 168, 2017.

    Article  ADS  Google Scholar 

  22. M. Sharma, M. K. Sharma, U. P. Verma et al., Adv. Space Res., 54, 252, 2014.

    Article  ADS  Google Scholar 

  23. M. K. Sharma, M. Sharma, U. P. Verma et al., Adv. Space Res., 54, 1963, 2014.

    Article  ADS  Google Scholar 

  24. M. K. Sharma and S. Chandra, Astrophys. Astron., 42, 112, 2021.

    Article  ADS  Google Scholar 

  25. S. Chandra and W. H. Kegel, Astron. Astrophys., 142, 113, 2000.

    ADS  Google Scholar 

  26. M. K. Sharma and S. Chandra, Astrophysics, 64, 388, 2021.

    Article  ADS  Google Scholar 

  27. M. K. Sharma and S. Chandra, Astrophys. Astron., 42, 112, 2021.

    Article  ADS  Google Scholar 

  28. P. Palmer, B. Zuckerman, D. Bhul et al., Astrophys. J., 156, L147, 1969.

    Article  ADS  Google Scholar 

  29. S. C. Madden, W. M. Irvine, H. E. Matthews et al., Astron. J., 97, 1403, 1989.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Sharma.

Additional information

Published in Astrofizika, Vol. 65, No. 2, pp. 289-299 (May 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.K., Chandra, S. Disilicon Carbide (Si2C) in the Interstellar Medium. Astrophysics 65, 266–277 (2022). https://doi.org/10.1007/s10511-022-09736-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-022-09736-0

Keywords

Navigation