Skip to main content
Log in

Fermionic Condensate in de Sitter Spacetime

  • Published:
Astrophysics Aims and scope

Fermionic condensate is investigated in (D + 1)-dimensional de Sitter spacetime by using the cutoff function regularization. In order to fix the renormalization ambiguity for massive fields an additional condition is imposed, requiring the condensate to vanish in the infinite mass limit. For large values of the field mass the condensate decays exponentially in odd dimensional spacetimes and follows a power law decay in even dimensional spacetimes. For a massless field the fermionic condensate vanishes for odd values of the spatial dimension D and is nonzero for even D. Depending on the spatial dimension the fermionic condensate can be either positive or negative. The change in the sign of the condensate may lead to instabilities in interacting field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, Chur, Switzerland 1990).

    Book  Google Scholar 

  2. J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ., 5-6, 75, 2014.

  3. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Book  Google Scholar 

  4. L. Parker and D. Toms, Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 2011).

    MATH  Google Scholar 

  5. G. Cognola, E. Elizalde, S. Nojiri et al., JCAP, 02, 2005, 010.

    Article  ADS  Google Scholar 

  6. A. Dolgov and D. N. Pelliccia, Nucl. Phys. B, 734, 208, 2006.

    Article  ADS  Google Scholar 

  7. P. Candelas and D. J. Raine, Phys. Rev. D, 12, 965, 1975.

    Article  ADS  Google Scholar 

  8. S. G. Mamayev, Sov. Phys. J., 24, 63, 1981.

    Article  Google Scholar 

  9. E. R. Bezerra de Mello and A. A. Saharian, J. High Energy Phys., 08, 2010, 038.

    Article  ADS  Google Scholar 

  10. E. R. Bezerra de Mello and A. A. Saharian, J. High Energy Phys., 12, 2008, 081.

    Article  ADS  Google Scholar 

  11. A. A. Saharian, Class. Quantum Grav., 25, 165012, 2008.

  12. S. Bellucci, A. A. Saharian, and H. A. Nersisyan, Phys. Rev. D, 88, 024028, 2013.

  13. S. Bellucci, E. R. Bezerra de Mello, and A. A. Saharian, Phys. Rev. D, 83, 085017, 2011.

  14. A. Flachi, Phys. Rev. D, 88, 085011, 2013.

  15. A. Flachi and K. Fukushima, Phys. Rev. Lett., 113, 091102, 2014.

  16. V. E. Ambru°, and E. Winstanley, Class. Quantum Grav. 34, 14501, 2017.

  17. S. Catterall, J. Laiho, and J. Unmuth-Yockey, J. High Energy Phys., 10, 2018, 013.

    Article  ADS  Google Scholar 

  18. A. A. Saharian, E. R. Bezerra de Mello, and A. A. Saharyan, Phys. Rev. D, 100, 105014, 2019.

  19. A. Saharian, T. Petrosyan, and A. Hovhannisyan, Universe 7, 73, 2021.

    Article  ADS  Google Scholar 

  20. S. Bellucci, W. Oliveira dos Santos, E. R. Bezerra de Mello et al., arXiv:2105. 00829.

  21. B. Allen, Phys. Rev. D, 32, 3136, 1985.

    Article  ADS  MathSciNet  Google Scholar 

  22. I. I. Cotăescu, Phys. Rev. D, 65, 084008, 2002.

  23. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1966).

    MATH  Google Scholar 

  24. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon and Breach, New York, 1986), Vol. 2.

  25. Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972).

  26. Y. Décanini, and A. Folacci, Phys. Rev. D, 78, 044025, 2008.

  27. L. H. Ford, Phys. Rev. D, 22, 3003, 1980.

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Elizalde, S. Leseduarte, and S. D. Odintsov, Phys. Rev. D, 49, 5551, 1994.

    Article  ADS  Google Scholar 

  29. T. Inagaki, T. Muta, and S. D. Odintsov, Prog. Theor. Phys. Suppl., 127, 93, 1997.

    Article  ADS  Google Scholar 

  30. J. D. Pfautsch, Phys. Lett. B, 117, 283, 1982.

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Sasaki, T. Tanaka, and K. Yamamoto, Phys. Rev., D 51, 2979, 1995.

  32. F. V. Dimitrakopoulos, L. Kabir, B. Mosk et al., J. High Energy Phys., 06, 2015, 095.

    Article  ADS  Google Scholar 

  33. A. A. Saharian and T. A. Petrosyan, Phys. Rev. D, 104, 065017, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Saharian.

Additional information

Published in Astrofizika, Vol. 64, No. 4, pp. 575-588 (November 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saharian, A.A., de Mello, E.R.B., Kotanjyan, A.S. et al. Fermionic Condensate in de Sitter Spacetime. Astrophysics 64, 529–543 (2021). https://doi.org/10.1007/s10511-021-09713-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-021-09713-z

Keywords

Navigation