Skip to main content

Modulation of Galactic Cosmic Rays Due to Magnetic Clouds and Associated Structures in the Interplanetary Space: 1996-2018

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We study the modulation of galactic cosmic rays due to magnetic clouds observed during solar cycles 23 and 24 (1996-2018). We utilize solar wind plasma and field data together with cosmic ray intensity (CRI) data during the passage of magnetic clouds and associated structures. We apply superposed epoch analysis to analyze these data. We study the relative importance of magnetic clouds and their associated structures in modulating the cosmic rays. We observe significant differences in the amplitudes and time profiles of transient depressions in cosmic ray intensity due to magnetic regimes of different field strengths and topologies. We discuss the observed results in light of differences in the simultaneous plasma and magnetic field properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. F. Burlaga, E. Sittler, F. Mariani et al., J. Geophys. Res., 86, 667, 1981.

    Article  Google Scholar 

  2. 2.

    R. P. Lepping, L. F. Burlaga, B. T. Tsurutani et al., J. Geophys. Res., 96, 9425, 1991.

    ADS  Article  Google Scholar 

  3. 3.

    B. Badruddin and Y. P. Singh, Planet. Space Sci., 57, 31, 2009.

    Article  Google Scholar 

  4. 4.

    M. V. Alves, E. Echer, W. D. Gonzalez, J. Atmos. Sol. Terr. Phys., 73, 1380, 2011.

    ADS  Article  Google Scholar 

  5. 5.

    O. P. M. Aslam and B. Badruddin, Solar Phys., 292, 135, 2017.

    ADS  Article  Google Scholar 

  6. 6.

    E. Kilpua, H. E. J. Koskinen, and T. I. Pulkkinen, Liv. Rev. Solar Phys., 14, 5, 2017.

    ADS  Article  Google Scholar 

  7. 7.

    B. Badruddin, O. P. M. Aslam, M. Derouich et al., Space Weather, 17, 487, 2019.

    ADS  Article  Google Scholar 

  8. 8.

    H. V. Cane, Space Sci. Rev., 93, 55, 2000.

    ADS  Article  Google Scholar 

  9. 9.

    H. Mavromichalaki, A. Papaioannou, C. Plainaki et al., Adv. Space Res., 47, 2210, 2011.

    ADS  Article  Google Scholar 

  10. 10.

    K. Kudela, R. Brenkus, and J. Atmos. Solar-Terr. Phys., 66, 1121, 2004.

    ADS  Article  Google Scholar 

  11. 11.

    X. X. Yu, H. Lu, G. M. Le et al., Solar Phys., 263, 223, 2010.

    ADS  Article  Google Scholar 

  12. 12.

    R. Modzelewska and M. V. Alania, Adv. Space Res., 50, 716, 2012.

    ADS  Article  Google Scholar 

  13. 13.

    K. P. Arunbabu, H. M. Antia, S. R. Dugad et al., Astron. Astrophys., 580, A41, 2015.

    Article  Google Scholar 

  14. 14.

    A. Kumar and B. Badruddin, Solar Phys., 289, 2177, 2014.

    ADS  Article  Google Scholar 

  15. 15.

    A. Belov, A. Abunin, M. Abunina et al., Solar Phys., 289, 3949, 2014.

    ADS  Article  Google Scholar 

  16. 16.

    B. Badruddin and A. Kumar, Solar Phys., 291, 559, 2016.

    ADS  Article  Google Scholar 

  17. 17.

    E. Paouris and H. Mavromichalaki, Solar Phys., 292, 30, 2017.

    ADS  Article  Google Scholar 

  18. 18.

    M. Dumbovic, B. Heber, B. Vršnak et al., Astrophys. J., 860, 71, 2018.

    ADS  Article  Google Scholar 

  19. 19.

    A. S. Petukhova, I. S. Petukhov, and S. I. Petukhov, J. Geophys. Res., 124, 19, 2019.

    Article  Google Scholar 

  20. 20.

    A. Papaioannou, A. Belov, M. Abunina et al., Astrophys. J., 890, 101, 2020.

    ADS  Article  Google Scholar 

  21. 21.

    D. Venkatesan and B. Badruddin, Space Sci. Rev., 52, 121, 1990.

    ADS  Article  Google Scholar 

  22. 22.

    J. A. Lockwood, W. R. Webber, and H. Debrunner, J. Geophys. Res., 96, 11, 587, 1991.

    Google Scholar 

  23. 23.

    A. Wawrzynczak and M. V. Alania, Adv. Space Res., 45, 622, 2010.

    ADS  Article  Google Scholar 

  24. 24.

    J. J. Masías-Meza, S. Dasso, P. Démoulinet al., Astron. Astrophys., 592, A118 2016.

  25. 25.

    I. G. Richardson and H. V. Cane, Solar Phys., 270, 609, 2011.

    ADS  Article  Google Scholar 

  26. 26.

    A. Belov, A. Abunin, M. Abunina et al., Solar Phys., 290, 1429, 2015.

    ADS  Article  Google Scholar 

  27. 27.

    M. Fadaaq and B. Badruddin, Astrophys. Space Sci., 366, 10, 2021.

    ADS  Article  Google Scholar 

  28. 28.

    G. Zhang and L. F. Burlaga, J. Geophys. Res., 93, 2511, 1988.

    ADS  Article  Google Scholar 

  29. 29.

    J. A. Le Roux and M. S. Potgieter, Astron. Astrophys., 243, 531, 1991.

    ADS  Google Scholar 

  30. 30.

    B. Badruddin, R. S. Yadav, and N. R. Yadav, Solar Phys., 105, 413, 1986.

    ADS  Article  Google Scholar 

  31. 31.

    D. V. Reames, S. W. Kahler, and A. J. Tylka, Astrophys. J. Lett., 700, L196, 2009.

    ADS  Article  Google Scholar 

  32. 32.

    Y. P. Sigh and B. Badruddin, J. Geophys. Res., 112, A02101, 2007.

    ADS  Google Scholar 

  33. 33.

    J. Zhang, M. W. Leimohn, J. U. Kozyra et al., J. Geophys. Res., 109, A09101, 2004.

    ADS  Google Scholar 

  34. 34.

    N. Iucci, M. Parisi, M. Storini et al., Nuovo Cimento, 2C, 421, 1979.

    Google Scholar 

  35. 35.

    B. Badruddin, Astrophys. Space Sci., 246, 171, 1997.

    ADS  Article  Google Scholar 

  36. 36.

    A. Gil, R. Iskra, R. Modzeleveska et al., Adv. Space Res., 35, 687, 2005.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Badruddin.

Additional information

Published in Astrofizika, Vol. 64, No. 2, pp. 241-257 (May 2021).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fadaaq, M., Badruddin, B. Modulation of Galactic Cosmic Rays Due to Magnetic Clouds and Associated Structures in the Interplanetary Space: 1996-2018. Astrophysics 64, 210–218 (2021). https://doi.org/10.1007/s10511-021-09682-3

Download citation

Keywords

  • cosmic ray: interplanetary space: magnetic cloud: solar wind: interplanetary magnetic field