Skip to main content
Log in

Density Distribution of Photospheric Vertical Electric Currents in Flare-Active Regions of the Sun

  • Published:
Astrophysics Aims and scope

Electric currents flow in active regions of the sun. Information on the distribution of the currents is important for understanding energy release processes on the sun’s surface and in overlying layers. This is an analysis of the probability density function (PDF) of the absolute value of the density of photospheric vertical electric currents | jz | in 48 active regions from 2010 through 2015 at times before and after flares. | jz | is calculated by applying a differential form of the magnetic field circulation theorem (Ampere’s law) to photospheric vector magnetograms from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). It is shown that for the active regions studied here PDF (| jz |) can be calculated in a first approximation by a model consisting of a folded normal distribution at low values (| jz |≲ 9·103 statampere/cm2) and a falling power law function at higher values. A least squares method yields the model parameters for all regions, histograms of their distributions are plotted, and the mathematical expectations and mean square deviations are calculated. No systematic changes in the model parameters over the time of a flare were observed. Neither an explicit relation of the parameters to the class of a flare, nor to the Hale magnetic class was found in terms of the approach used for the limited sample of flares and active regions examined here. Arguments are presented in favor of the proposition that a folded normal distribution at low values represents noise in the data, while a power-law “tail” may reflect the nature of the processes that generate the currents in active regions of the sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Stenflo, Solar Magnetic Fields. Polarized Radiation Diagnostics, Kluwer Academic Publishers, Dordrecht (1994).

    Book  Google Scholar 

  2. M. Ryutova, Physics of Magnetic Flux Tubes, Springer-Verlag, Berlin (2015).

    Book  Google Scholar 

  3. A. B. Severnyi, Some Problems in Solar Physics, Nauka, Moscow (1988).

    Google Scholar 

  4. G. D. Fleishman and A. A. Pevtsov, Geophys. Mon. Ser. 235, 43 (2018).

    Article  Google Scholar 

  5. A. M. Zvereva and A. B. Severnyi, Izv. KrAO 41/42, 97 (1970).

    Google Scholar 

  6. K. G. Puschmann, B. R. Cobo, and V. M. Pillet, Astrophys. J. 721, L58 (2010).

    Article  ADS  Google Scholar 

  7. Yu. A. Fursyak and V. I. Abramenko, Astrophysics 60, 544 (2017).

    Article  ADS  Google Scholar 

  8. B. Schmieder and G. Aulanier, Geophys. Mon. Ser. 235, 391 (2018).

    Article  Google Scholar 

  9. A. V. Stepanov and V. V. Zaitsev, Magntospheres of Active Regions of the Sun and Stars, Fizmatlit, Moscow (2019).

    Google Scholar 

  10. V. I. Abramenko, S. I. Gopasyuk, and M. B. Ogir’, Izv. KrAO 81, 8 (1990).

    Google Scholar 

  11. I. Kontogiannis, M. K. Georgoulis, S.-H. Park, et al., Solar Phys. 292, 159 (2017).

    Article  ADS  Google Scholar 

  12. Yu. A. Fursyak, Geomagn. Aeronom. 58, 1129 (2018).

    Article  ADS  Google Scholar 

  13. G. E. Moreton and A. B. Severny, Sol. Phys. 3, 282 (1968).

    Article  ADS  Google Scholar 

  14. V. A. Romanov and T. T. Tsan, Sov. Astron. 34, 656 (1990).

    ADS  Google Scholar 

  15. V. I. Abramenko, S. I. Gopasyuk, and M. G. Ogir’, Izv. KrAO 83, 3 (1991).

    Google Scholar 

  16. R. C. Canfield, J.-F. de La Beaujardiere, and K. D. Leka, Phil. Trans. R. Soc. Lond. A, 336, 381 (1991).

    Article  ADS  Google Scholar 

  17. J. Li, T. R. Metcalf, R. C. Canfield, et al., Astrophys. J. 482, 490 (1997).

    Article  ADS  Google Scholar 

  18. S. Musset, N. Vilmer, and V. Bommier, Astron. Astrophys. 580, A106 (2015).

    Article  ADS  Google Scholar 

  19. I. N. Sharykin and A. G. Kosovichev, Astrophys. J. Lett. 788, L18 (2014).

    Article  ADS  Google Scholar 

  20. I. N. Sharykin, A. G. Kosovichev, and I. V. Zimovets, Astrophys. J. 807, id. 102 (2015).

  21. M. A. Livshits, I. Yu. Grigor’eva, I. I. Mysh’yakov, et al., Astron. Rep. 60, 939 (2016).

    Article  ADS  Google Scholar 

  22. I. V. Zimovets, I. N. Sharykin, and W. Q. Gan, Astrophys. J. 891, id. 138 (2020).

  23. J. Kang, T. Magara, S. Inoue, et al., Publ. Astron. Soc. Japan, 68, 101 (2016).

    Article  ADS  Google Scholar 

  24. K. Moraitis, A. Toutountzi, H. Isliker, et al., Astron. Astrophys. 596, A56 (2016).

    Article  Google Scholar 

  25. G. E. Hale, F. Ellerman, S. B. Nicholson, et al., Astrophys. J. 49, 153 (1919).

    Article  ADS  Google Scholar 

  26. P. H. Scherrer, J. Schou, R. I. Bush, et al., Sol. Phys. 275, 207 (2012).

    Article  ADS  Google Scholar 

  27. R. P. Lin, B. R. Dennis, G. J. Hurford, et al., Sol. Phys. 210, 3 (2002).

    Article  ADS  Google Scholar 

  28. M. G. Bobra, X. Sun, J. T. Hoeksema, et al., Sol. Phys. 289, 3549 (2014).

    Article  ADS  Google Scholar 

  29. J. T. Hoeksema, Y. Liu, K. Hayashi, et al., Sol. Phys. 289, 3483 (2014).

    Article  ADS  Google Scholar 

  30. M. R. Calabretta and E. W. Greisen, Astron. Astrophys. 395, 1077 (2002).

    Article  ADS  Google Scholar 

  31. W. T. Thompson, Astron. Astrophys. 449, 791 (2006).

    Article  ADS  Google Scholar 

  32. V. M. Sadykov, A. G. Kosovichev, I. N. Kitiashvili, et al., Astrophys. J. 893, id. 24 (2020).

  33. F. C. Leone, L. S. Nelson, and R. B. Nottingham, Technometrics 3, 543 (1961).

    Article  MathSciNet  Google Scholar 

  34. R. C. Elandt, Technometrics 3, 551 (1961).

    Article  MathSciNet  Google Scholar 

  35. S. Toriumi and H. Wang, Liv. Rev. Sol. Phys. 16, 128 (2019).

    Google Scholar 

  36. V. I. Abramenko and D. W. Longcope, Astrophys. J. 619, 1160 (2005).

    Article  ADS  Google Scholar 

  37. V. I. Abramenko, Astrophys. J. 629, 1141 (2005).

    Article  ADS  Google Scholar 

  38. V. Abramenko and V. Yurchyshyn, Astrophys. J. 720, 717 (2010).

    Article  ADS  Google Scholar 

  39. A. S. Kutsenko, V. I. Abramenko, K. M. Kuzanyan, et al., Mon. Not. Roy. Astron. Soc. 480, 3780 (2018).

    Article  ADS  Google Scholar 

  40. E. I. Mogilevskii, Fractals on the Sun, FIZMATLIT, Moscow (2001).

    Google Scholar 

  41. M. Aschwanden, Self-Organized Criticality in Astrophysics. The Statistics of Nonlinear Processes in the Universe, Springer-Verlag, Berlin (2011).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zimovets.

Additional information

Translated from Astrofizika, Vol. 63, No. 3, pp. 463-477 (August 2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimovets, I.V., Nechaeva, A.B., Sharykin, I.N. et al. Density Distribution of Photospheric Vertical Electric Currents in Flare-Active Regions of the Sun. Astrophysics 63, 408–420 (2020). https://doi.org/10.1007/s10511-020-09645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09645-0

Keywords

Navigation