Skip to main content

Induced Cosmological Constant in Brane Models with a Compact Dimension

The vacuum expectation value of the surface energy-momentum tensor of a charged scalar field on a flat brane in an anti-de Sitter space-time with a compact spatial dimension is studied. The existence of a constant gauge field is also assumed. Because of the nontrivial topology of the space, the latter leads to an Aharonov-Bohm type effect. A generalized zeta-function method is used for renormalizing the vacuum expectation value. The cosmological constant induced on the brane is a periodic function of the magnetic flux through the compact dimension and, depending on the parameters of the problem, can be either positive or negative.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Maartens and K. Koyama, Living Rev. Relativity 13, 5 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and its Applications, Clarendon, Oxford (1997).

    Google Scholar 

  3. 3.

    K. A. Milton, The Casimir Effect: Physical Manifestation of Zero-Point Energy, World Scientific, Singapore (2002).

    Google Scholar 

  4. 4.

    M. Bordag, G. L. Klimchitskaya, U. Mohideen, et al., Advances in the Casimir Effect, Oxford University Press, Oxford (2009).

    Book  MATH  Google Scholar 

  5. 5.

    D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, ed., Casimir Physics, Lecture Notes in Physics 834, Springer-Verlag, Berlin (2011).

    Google Scholar 

  6. 6.

    E. R. Bezerra de Mello, A. A. Saharian, and M. R. Setare, Phys. Rev. D 92, 104005 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    A. A. Saharian and M. R. Setare, Phys. Lett. B 552, 119 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    A. Knapman and D. J. Toms, Phys. Rev. D 69, 044023 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    A. A. Saharian, Nucl. Phys. B 712, 196 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    A. A. Saharian, Phys. Rev. D 73, 044012 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    A. A. Saharian, Phys. Rev. D 73, 064019 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    S.-H. Shao, P. Chen, and J.-A. Gu, Phys. Rev. D 81, 084036 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    E. Elizalde, S. D. Odintsov, and A. A. Saharian, Phys. Rev. D 87, 084003 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    A. A. Saharian, A. S. Kotanjyan, and A. A. Saharyan, Proc. Yerevan State Univ., Phys. and Math. Sci. 3, 37 (2016).

    Google Scholar 

  15. 15.

    A. S. Kotanjyan, A. A. Saharian, and A. A. Saharyan, Galaxies 5, 102 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    A. A. Saharian, Phys. Rev. D 69, 085005 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    A. A. Saharian, Phys. Rev. D 70, 064026 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    A. A. Saharian, Phys. Rev. D 74, 124009 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    E. R. Bezerra de Mello, A. A. Saharian, and V. Vardanyan, Phys. Lett. B 741, 155 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    S. Bellucci, A. A. Saharian, and V. Vardanyan, J. High Energy Phys. 11, 092 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    S. Bellucci, A. A. Saharian, and V. Vardanyan, Phys. Rev. D 93, 084011 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    E. Elizalde, S. D. Odintsov, A. Romeo, et al., Zeta Regularization Techniques with Applications, World Scientific, Singapore (1994).

    Book  MATH  Google Scholar 

  23. 23.

    B. Greene and J. Levin, J. High Energy Phys. 11, 096 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    A. O. Barvinskii, Usp. Fiz. Nauk 175, 569 (2005).

    Article  Google Scholar 

  25. 25.

    B. P. Abbott, et al., Phys. Rev. Lett. 119, 161101 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    L. Visinelli, N. Bolis, S. Vagnozzi, Phys. Rev. D 97, 064039 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    M. D. Douglas, Sh. Kachru, Rev. Mod. Phys. 79, 733 (2007).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Saharian.

Additional information

Translated from Astrofizika, Vol. 61, No. 3, pp. 423-437 (August 2018).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saharian, A.A., Sargsyan, H.G. Induced Cosmological Constant in Brane Models with a Compact Dimension. Astrophysics 61, 375–390 (2018). https://doi.org/10.1007/s10511-018-9544-7

Download citation

Keywords

  • cosmological constant
  • brane models
  • anti-de Sitter space