Advertisement

Astrophysics

pp 1–13 | Cite as

The First Photometric Analysis of the Open Clusters Dolidze 32 and 36

Article

We present a first study of two open clusters Dolidze 32 and Dolidze 36 in the near-infrared region JHKs with the aid of PPMXL catalog. In our study, we used a method able to separate open cluster stars from those that belong to the stellar background. Our results of calculations indicate that for both cluster Dolidze 32 and Dolidze 36 the number of probable member is 286 and 780, respectively. We have estimated the cluster center for Dolidze 32 and Dolidze 36 are α = 18h41m4s.188 , δ = -04°04′57′′.144 , α = 20h02m29s.95 , δ = 42°05′49′′.2 , respectively. The limiting radius for both clusters Dolidze 32 and Dolidze 36 is about 0.94 ± 0.03 pc and 0.81 ± 0.03 pc, respectively. The Color Magnitude Diagram allows us to estimate the reddening E(B - V) = 1.41 ± 0.03 mag. for Dolidze 32 and E(B - V) = 0.19 ± 0.04 mag. for Dolidze 36 in such a way that the distance modulus (m - M) is 11.36 ± 0.02 and 10.10 ± 0.03 for both clusters, respectively. On the other hand, the luminosity and mass functions of these two open clusters, Dolidze 32 and Dolidze 36, have been estimated, showing that the estimated masses are 437 ± 21 M and 678 ± 26 M, respectively, while the mass function slopes are -2.56 ± 0.62 and -2.01 ± 0.70 for Dolidze 32 and Dolidze 36, respectively. Finally, the dynamical state of these two clusters shows that only Dolidze 36 can be considered as a dynamically relaxed cluster.

Keywords

Star clusters: stellar membership probability: color magnitude diagram: photometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. C. Joshi, A. K. Dambis, A. K. Pandey et al., arXiv:1606.06425v1, 2016.Google Scholar
  2. 2.
    L. Bukowiecki, G. Maciejewski, P. Konorski et al., Strobel, A.: Acta Astron., 61, 231, 2011.ADSGoogle Scholar
  3. 3.
    N. V. Kharchenko, A. E. Piskunov, S. Roeser et al., Astron. Astrophys., 558, A53, 2013.CrossRefGoogle Scholar
  4. 4.
    W. S. Dias, B. S. Alessi, A. Moitinho et al., Astron. Astrophys., 389, 871, 2002.ADSCrossRefGoogle Scholar
  5. 5.
    S. Roeser, M. Demleitner, and E. Schilbach, Astron. J., 139, 2440, 2010.ADSCrossRefGoogle Scholar
  6. 6.
    G. Maciejewski and A. Niedzielski, Astron. Astrophys., 467, 1065, 2007.ADSCrossRefGoogle Scholar
  7. 7.
    G. Maciejewski, B. Mihov, and Ts. Georgiev, Astron. Nachr., 330, 851, 2009.Google Scholar
  8. 8.
    A. A. Haroon, H. A. Ismail, and F. Y. Alnagahy, Astrophys. Space Sci., 352, 665, 2014.ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Haroon, H. H. Ismail, and W. H. Elsanhoury, Astrophysics, 60, 173, 2017.ADSCrossRefGoogle Scholar
  10. 10.
    I. King, Astron. J., 67, 471, 1962.ADSCrossRefGoogle Scholar
  11. 11.
    I. King, Astron. J., 71, 64, 1966.ADSCrossRefGoogle Scholar
  12. 12.
    A. L. Tadross and R. Bendary, J. Kor. Astron. Soc., 47, 137, 2014.ADSCrossRefGoogle Scholar
  13. 13.
    S. R. Nilakshi et al., Astron. Astrophys., 383, 153, 2002.ADSCrossRefGoogle Scholar
  14. 14.
    A. L. Tadross, Research in Astron. Astrophys., 12, 158, 2012.Google Scholar
  15. 15.
    Zhao Jun-Liang, Tian Kai-Ping, Xu Zong-Haiand, Yin Ming-Guan, Chin. Astron. Astrophys., 6, 293, 1982.Google Scholar
  16. 16.
    M. Y. Amin and W. H. Elsanhoury, Serbian Astron. J., 194, 59, 2017.ADSCrossRefGoogle Scholar
  17. 17.
    W. Sanders, Astron. Astrophys., 14, 226, 1971.ADSGoogle Scholar
  18. 18.
    S. Vasilevskis and R. A. Rach, Astron. J., 62, 175, 1957.ADSCrossRefGoogle Scholar
  19. 19.
    M. El Nazer, M. Sc. Thesis, Cairo University, 2014.Google Scholar
  20. 20.
    P. Marigo, L. Girardi, A. Bressan et al., Astron. Astrophys., 482, 883, 2008.ADSCrossRefGoogle Scholar
  21. 21.
    L. Girardi, B. F. Williams, K. M. Gilbert et al., Astrophys. J., 724, 1030, 2010.ADSCrossRefGoogle Scholar
  22. 22.
    D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astron. J., 500, 525, 1998.ADSCrossRefGoogle Scholar
  23. 23.
    E. F. Schlafly and D. P. Finkbeiner, Astron. J., 737, 103, 2011.ADSCrossRefGoogle Scholar
  24. 24.
    C. M. Dutra, B. X. Santiago, and E. Bica, Astron. Astrophys., 381, 219, 2002.Google Scholar
  25. 25.
    M. Fiorucci and U. Munari, Astron. Astrophys., 401, 781, 2003.ADSCrossRefGoogle Scholar
  26. 26.
    E. E. Salpeter, Astrophys. J., 121, 161, 1955.ADSCrossRefGoogle Scholar
  27. 27.
    K. A. Montgomery, L. A. Marschall, and K. A. Janes, Astron. J., 106, 181, 1993.ADSCrossRefGoogle Scholar
  28. 28.
    R. D. Jeffries, M. R. Thurston, and N. C. Hambly, Astron. Astrophys., 375, 863, 2001.ADSCrossRefGoogle Scholar
  29. 29.
    R. D. Mathieu and D. W. Latham, Astron. J., 92, 1364, 1986.ADSCrossRefGoogle Scholar
  30. 30.
    L. Spitzer and M. H. Hart, Astrophys. J., 166, 483, 1971.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Y. Amin
    • 1
    • 2
  • W. H. Elsanhory
    • 3
    • 4
  • A. A. Haroon
    • 3
    • 5
  1. 1.Astronomy Dept., Faculty of ScienceCairo UniversityCairoEgypt
  2. 2.Physics Dept., College of Sciences and Humanities, Hawtat SudairMajmaah UniversityMajmaahSaudi Arabia
  3. 3.Astronomy Dept.National Research Institute of Astronomy and Geophysics (NRIAG)CairoEgypt
  4. 4.Physics Dept., Faculty of ScienceNorthern Border UniversityArarSaudi Arabia
  5. 5.King Abdul Aziz universityJeddahSaudi Arabia

Personalised recommendations