Advertisement

Astrophysics

, Volume 61, Issue 2, pp 171–181 | Cite as

Chemical Composition of Field RR Lyrae Stars as an Indicator of the Evolution of Galactic Subsystems

  • V. A. Marsakov
  • M. L. Gozha
  • V. V. Koval’
  • E. I. Vorobyov
Article
  • 18 Downloads

The relationships among the chemical and spatial-kinematic properties of field RR Lyrae variables (lyrids) are examined. It is shown that some of them are metal-rich lyrids with thin-disk kinematics and the problem of the existence of these lyrids is discussed. Evidence is presented of a reduction in the upper limit on the mass of the formed stars with increasing metallicity in the thin disk and with better mixing of interstellar matter in this subsystem of the Galaxy. It is found that the lyrids with thick-disk kinematics mostly have metal contents [Fe/H]<–1.0 and high ratios [α/Fe] ≈ 0.4 , while only about 10% of the field dwarfs with the same chemical composition have a so-called “low-metallicity tail.” A sharp drop in the ratio [α/Fe] in the Galaxy occurs in those lyrids belonging to a thick disk; this is indicative of a long formation period for these subsystems. An inconsistency is found between the chemical composition of some lyrids and their kinematics. It is assumed that they are all most likely of extragalactic origin.

Keywords

RR Lyrae variables α-element abundances galactic subsystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Maintz and K. S. de Boer, Astron. Astrophys. 442, 229 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    T. Bensby, S. Feltzing, and M. S. Oey, Astron. Astrophys. 562, A71 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    S. Liu, G. Zhao, Y.-Q. Chen, et al., Research in Astron. Astrophys. 13, 1307 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    M. L. Gozha, V. A. Marsakov, and V. V. Koval’, Astrophysics 61, 41 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    A. K. Dambis, L. N. Berdnikov, A. Y. Kniazev, et al., Mon. Not. Roy. Astron. Soc. 435, 3206 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Marsakov, M. L. Gozha, and V. V. Koval’, Astron. Rep. 62, 50 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    T. Bensby, S. Feldzing, and I. Lungstrem, Astron. Astrophys. 410, 527 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    K. Fuhrmann, New Astron. 7, 161 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    R. G. Gratton, E. Carretta, S. Desidera, et al., Astron. Astrophys. 406, 131 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    V. A. Marsakov and T. V. Borkova, Astron. Letters 31, 515 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    S. M. Andrievsky, V. V. Kovtyukh, G. Wallerstein, et al., Publ. Astron. Soc. Pacif. 122, 877 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. Haywood, P. Di Matteo, M. D. Lehnert, et al., Astron. Astrophys. 560, 109 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Kunder, R. M. Rich, K. Hawkins, et al., Astrophys. J. 808, 12 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    K. A. Venn, M. Irwin, M. D. Shetrone, et al., Astrophys. J. 128, 1177 (2004).ADSGoogle Scholar
  15. 15.
    T. D. Kinman, W. Aoki, T. C. Beers, and W. R. Brown, Astrophys. J. Letters, 755, L18, (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Marsakov
    • 1
  • M. L. Gozha
    • 1
  • V. V. Koval’
    • 1
  • E. I. Vorobyov
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations