Advertisement

Astrophysics

, Volume 61, Issue 1, pp 91–100 | Cite as

Ultraviolet Spectral Evolution of V1974 Cyg Using IUE Low Resolution Spectra

  • G. M. Hamed
  • M. R. Sanad
  • A. Essam
  • S. Yousef
Article
  • 17 Downloads

We investigated the spectral evolution of some normalized UV emission lines through different stages of the outburst of the classical nova V1974 Cyg using International Ultraviolet Explorer (IUE) low resolution short wavelength spectra. The emission line fluxes were calculated and used to estimate the ultraviolet luminosity of the emitting region, and the latter is used to determine the average mass accretion rate during the post-nova phase. We found an average value of the ultraviolet continuum luminosity L cont  ∼ 4.6 ± 0.4 × 1035 erg s-1 and the average mass accretion rate \( {\overset{\cdot }{M}}_{acc}\sim 6.6\pm 0.6\times {10}^{-10}{M}_{\astrosun}\kern0.5em {yr}^{\hbox{-} 1} \). We used the fitted continuum luminosity to estimate the temperature of the central white dwarf, and we found an average value of ~ 3×105 K. The spectral behavior is attributed to the variation in the opacity, temperature, and density of the ejecta during the different phases of the outburst. Our results are consistent with the theoretical ONe classical nova models.

Keywords

novae cataclysmic variables - stars Individual (V1974 Cyg) - ultraviolet stars - white dwarfs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Warner, Cataclysmic Variable Stars, Cambridge: Cambridge University Press, doi: https://doi.org/10.1017/CB09780511586491, 2003.Google Scholar
  2. 2.
    G. T. Bath, Mon. Not. Roy. Astron. Soc., 182, 35, 1978.ADSCrossRefGoogle Scholar
  3. 3.
    M. Kato and I. Hachisu, Astrophys. J., 437, 802, 1994.ADSCrossRefGoogle Scholar
  4. 4.
    S. N. Shore, G. Sonneborn, S. Starrfield et al., Astrophys. J., 421, 344, 1994.ADSCrossRefGoogle Scholar
  5. 5.
    G. J. Schwarz, S. N. Shore, S. Starrfield et al., Mon. Not. Roy. Astron. Soc., 320, 103, 2001.ADSCrossRefGoogle Scholar
  6. 6.
    S. N. Shore, in Classical Novae, 2nd Edition., ed. M. F. Bode and A. Evans, Cambridge: Cambridge University Press, 43, 194-231, 2008.Google Scholar
  7. 7.
    S. N. Shore, Bulletin of the Astronomical Society of India, 40, 185, 2012.ADSGoogle Scholar
  8. 8.
    R. Gonzalez-Riestra and J. Krautter, in ESA Special Publication, Ultraviolet Astrophysics Beyond the IUE Final Archive, ed. W.Wamsteker, R.Gonzalez-Riestra, B.Harris, 413, 367, 1998.Google Scholar
  9. 9.
    P. Collins, B. A. Skiff, S. J. Bus et al., IAU Circ., 5454, 1992.Google Scholar
  10. 10.
    D. Chochol, L. Hric, Z. Urban et al., Astron. Astrophys., 277, 103, 1993.ADSGoogle Scholar
  11. 11.
    D. Chochol, J. Grygar, T. Pribulla et al., Astron. Astrophys., 318, 908, 1997.ADSGoogle Scholar
  12. 12.
    R. A. Downes and H. W. Duerbeck, Astron. J., 120, 2007, 2000.ADSCrossRefGoogle Scholar
  13. 13.
    I. Hachisu and M. Kato, Astrophys. J., 631, 1094, 2005.ADSCrossRefGoogle Scholar
  14. 14.
    F. Paresce, M. Livio, and W. Hack, Astron. Astrophys., 299, 823, 1995.ADSGoogle Scholar
  15. 15.
    N. Loiseau and E. Solano, in ESA Special Publication, Ultraviolet Astrophysics Beyond the IUE Final Archive, ed. W. Wamsteker, R. Gonzalez Riestra, B. Harris, 413, 715, 1998.Google Scholar
  16. 16.
    M. J. Seaton, Mon. Not. Roy. Astron. Soc., 187, 73P, 1979.ADSCrossRefGoogle Scholar
  17. 17.
    M. Nauenberg, Astrophys. J., 175, 417, 1972.ADSCrossRefGoogle Scholar
  18. 18.
    R. E. Williams, Astron. J., 104, 725, 1992.ADSCrossRefGoogle Scholar
  19. 19.
    S. N. Shore, G. Sonneborn, S. Starrfield et al., Astron. J., 106, 2408, 1993.ADSCrossRefGoogle Scholar
  20. 20.
    S. J. Austin, R. M. Wagner, S. Starrfield et al., Astron. J., 111, 869, 1996.ADSCrossRefGoogle Scholar
  21. 21.
    A. Cassatella, A. Altamore, and R. Gonzalez-Riestra, Astron. Astrophys., 384, 1023, 2002.ADSCrossRefGoogle Scholar
  22. 22.
    P. Rafanelli, L. Rosino, and M. Radovich, Astron. Astrophys., 294, 488, 1995.ADSGoogle Scholar
  23. 23.
    A. Cassatella, Astron. Astrophys., 439, 205, 2005.ADSCrossRefGoogle Scholar
  24. 24.
    A. Cassatella, H. J. G. L. M. Lamers, C. Rossi et al., Astron. Astrophys., 420, 571, 2004.Google Scholar
  25. 25.
    S. N. Shore, S. Starrfield, and G. Sonneborn, Astrophys. J., 463, L21, 1996.ADSCrossRefGoogle Scholar
  26. 26.
    A. Cassatella, R. Gonzalez-Riestra, in Lecture Notes in Physics, Berlin Springer Verlag, IAU Colloq. 122: Physics of Classical Novae, ed. A.Cassatella & R.Viotti, 369, 115, 1990.Google Scholar
  27. 27.
    J. José and M. Hernanz, Astrophys. J., 494, 680, 1998.ADSCrossRefGoogle Scholar
  28. 28.
    I. Hachisu, Astrophys. J. Suppl. Ser., 167, 59, 2006.ADSCrossRefGoogle Scholar
  29. 29.
    J. Krautter, H. Oegelman, S. Starrfield et al., Astrophys. J., 456, 788, 1996.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. M. Hamed
    • 1
  • M. R. Sanad
    • 1
  • A. Essam
    • 1
  • S. Yousef
    • 2
  1. 1.Stellar Astronomy Lab, Astronomy DepartmentNational Research Institute of Astronomy and GeophysicsCairoEgypt
  2. 2.Department of Astronomy, Space Science and MeteorologyCairo UniversityGizaEgypt

Personalised recommendations