Advertisement

Astrophysics

, Volume 60, Issue 3, pp 333–347 | Cite as

Analysis of the Non-LTE Lithium Abundance for a Large Sample of F-, G-, and K-Giants and Supergiants

Article

A five-dimensional interpolation method and corresponding computer program are developed for using published calculations to determine the non-LTE correction ∆NLTE to the lithium abundance logε(Li) derived from the Li I 6707.8 Å line. The ∆NLTE value is determined from the following five parameters: the effective temperature Teff, the acceleration of gravity logg, the metallicity index [Fe/H], the microturbulent velocity Vt, and the LTE Li abundance logε(Li) . The program is used to calculate values of ∆NLTE and the non-LTE Li abundance for 91 single bright giants from the list of Lebre, et al. By combining these results with data for 55 stars from the previous paper, we obtain the non-LTE values of logε(Li) for 146 FGK-giants and supergiants. We confirm that, because of the absence of the Li line in the spectra of most of these stars, it is only possible to estimate for them an upper bound for the Li abundance. A large spread is confirmed in logε(Li) for stars with masses M ≤ 6M ⦿ . A comparison of these results with model calculations of stars confirms the unique sensitivity of the lithium abundance to the initial rotation velocity V0. We discuss the giants and supergiants with lithium abundances logε(Li) = 1.4 ± 0.3 , which could have a rotational velocity V0=0 km/s and have already undergone deep convective mixing. Li-rich giants with lithium abundances logε(Li) ≥ 2 and nearly up to the initial value of logε(Li) = 3.2 ± 0.1 are examined. It is shown that the fraction of Li-rich giants with V0 ≈ 0 – 50 km/s is consistent with current evolutionary models. The other stars of this type, as well as all of the “super Li-rich” giants, for which the standard theory is untenable, can be explained by invoking the hypothesis of recent lithium synthesis in the star or an alternative hypothesis according to which a giant planet is engulfed by the star.

Keywords

stellar atmospheres: chemical composition: rotation of stars: stellar evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. S. Lyubimkov, Astrofizika 59, 459 (2016), [Astrophysics 59, 411 (2016)].Google Scholar
  2. 2.
    L. S. Lyubimkov, D. L. Lambert, B. M. Kaminsky, et al., Mon. Not. Roy. Astron. Soc. 427, 11 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    K. Lind, M. Asplund, and P. S. Barklem, Astron. Astrophys. 503, 541 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York (1961).MATHGoogle Scholar
  5. 5.
    I. S. Lyubimkov, B. M. Kaminskii, V. G. Metlov, et al., Pis’ma v Astron. zh. 41, 872 (2015), [Astron. Lett. 41, 809 (2015)].Google Scholar
  6. 6.
    A. Lèbre, P. de Laverny, J. D. do Nascimento, et al., Astron. Astrophys. 450, 1173 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    I. S. Lyubimkov, N. S. Polosukhina, and S. I. Rostopchin Astrofizika 34, 149 (1991), [Astrophysics 34, 65 (1991)].Google Scholar
  8. 8.
    L. S. Lyubimkov, D. L. Lambert, S. I. Rostopchin, et al., Mon. Not. Roy. Astron. Soc. 402, 1369 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. Claret, Astron. Astrophys. 424, 919 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    L. S. Lyubimkov, D. L. Lambert, S. A. Korotin, et al., Mon. Not. Roy. Astron. Soc. 446, 3447 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    S. Simón-Diaz and A. Herrero, Astron. Astrophys. 562, A135 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    G. A. Bragança, S. Daflon, K. Cunha, et al., Astron. J. 144, 130 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    I. S. Lyubimkov, Astrofizika 59, 519 (2016), [Astrophysics 59, 461 (2016)].Google Scholar
  14. 14.
    Y. B. Kumar and B. E. Reddy, Astrophys. J. 703, L46 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    C. Aguilera-Gómez, J. Chanamé, M. H. Pinsonneault, et al., Astrophys. J. 829, 127 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    R. de la Reza, N. A. Drake, I. Oliveira, et al., Astrophys. J. 806, 86 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Crimean Astrophysical ObservatoryRussian Academy of SciencesMoskvaRussia

Personalised recommendations