Skip to main content
Log in

Lithium in Stellar Atmospheres: Observations and Theory

  • REVIEWS
  • Published:
Astrophysics Aims and scope

Of all the light elements, lithium is the most sensitive indicator of stellar evolution. This review discusses current data on the abundance of lithium in the atmospheres of A-, F-, G-, and K-stars of different types, as well as the consistency of these data with theoretical predictions. The variety of observed Li abundances is illustrated by the following objects in different stages of evolution: (1) Old stars in the galactic halo, which have a lithium abundance logε(Li)=2.2 (the “lithium plateau”) that appears to be 0.5 dex lower than the primordial abundance predicted by cosmological models. (2) Young stars in the galactic disk, which have been used to estimate the contemporary initial lithium abundance logε(Li)=3.2±0.1 for stars in the Main sequence. Possible sources of lithium enrichment in the interstellar medium during evolution of the galaxy are discussed. (3) Evolving FGK dwarfs in the galactic disk, which have lower logε(Li) for lower effective temperature T eff and mass M. The “lithium dip” near T eff ~6600 K in the distribution of logε(Li) with respect to T eff in old clusters is discussed. (4) FGK giants and supergiants, of which most have no lithium at all. This phenomenon is consistent with rotating star model calculations. (5) Lithium rich cold giants with logε(Li) ≥ 2.0, which form a small, enigmatic group. Theoretical models with rotation can explain the existence of these stars only in the case of low initial rotation velocities V 0 <50 km/s. In all other cases it is necessary to assume recent synthesis of lithium (capture of a giant planet is an alternative). (6) Magnetic Ap-stars, where lithium is concentrated in spots located at the magnetic poles. There the lithium abundance reaches logε(Li)=6. Discrepancies between observations and theory are noted for almost all the stars discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

  2. L. S. Lyubimkov, Kinematika i fizika nebesnykh tel 26, 32 (2010), [Kinematics and Physics of Celestial Bodies, 26, 169 (2010)].

  3. K. A. Olive and D. N. Schramm, Nature, 360, 439 (1992).

  4. K. Lind, M. Asplund, and P. S. Barklem, Astron. Astrophys. 503, 541 (2009).

  5. F. Spite and M. Spite, Astron. Astrophys. 115, 357 (1982).

  6. M. Spite, F. Spite, and P. Bonifacio, Mem. Soc. Astron. Italiana Suppl. 22, 9 (2012).

  7. A. Mucciarelli, M. Salaris, P. Bonifacio, L. Monaco, and S. Villanova, Mon. Not. Roy. Astron. Soc. 444, 1812 (2014).

  8. G. Steigman, in: C. Charbonnel, M. Tosi, F. Primas, and C. Chiappini, ed., Light Elements in the Universe (IAU Simp. 268), Cambridge Univ. Press (2010), p. 19.

  9. A. Coc, S. Goriely, Y. Xu, M. Saimpert, and E. Vangioni, Astrophys. J. 744, 158 (2012).

  10. K. Lind, J. Melendez, M. Asplund, R. Collet, and Z. Magic, Astron. Astrophys. 554, A96 (2013).

  11. A. J. Korn, F. Grundahl, O. Richard, et al., Nature, 442, 657 (2006).

  12. P. Bonifacio, L. Sbordone, E. Caffau, et al., Astron. Astrophys. 542, A87 (2012).

  13. E. Caffau, P. Bonifacio, P. François, et al., Nature, 477, 67 (2011).

  14. A. Frebel, R. Collet, K. Eriksson, N. Christlieb, and W. Aoki, Astrophys. J. 684, 588 (2008).

  15. K. A. Olive, Mem. Soc. Astron. Italiana Suppl. 22, 197 (2012).

  16. S. Randich, in: C. Charbonnel, M. Tosi, F. Primas, and C. Chiappini, ed., Light Elements in the Universe (IAU Simp. 268), Cambridge Univ. Press (2010), p. 275.

  17. S. C. Balachandran, S. V. Mallik, and D. L. Lambert, Mon. Not. Roy. Astron. Soc. 410, 2526 (2011).

  18. E. L. Martin, R. Rebolo, A. Magazzù, and Ya. V. Pavlenko, Astron. Astrophys. 282, 503 (1994).

  19. P. Sestito, F. Palla, and S. Randich, Astron. Astrophys. 487, 965 (2008).

  20. D. Romano, F. Matteucci, P. Ventura, and F. D’Antona, Astron. Astrophys. 374, 646 (2001).

  21. F. Matteucci, in: C. Charbonnel, M. Tosi, F. Primas, and C. Chiappini, ed., Light Elements in the Universe (IAU Simp. 268), Cambridge Univ. Press (2010), p. 453.

  22. N. Prantzos, Astron. Astrophys. 542, A67 (2012).

  23. F. Matteucci, in: The Origin of the Galaxy and Local Group, Saas-Free Advanced Course 37, 145 (2014).

  24. L. S. Lyubimkov, Chemical Composition of Stars: Method and Results of Analysis, Astroprint, Odessa (1995).

  25. Y. Takeda, S. Honda, T. Ohnishi, et al., Publ. Astron. Soc. Japan, 65, 53 (2013).

  26. P. Gondoin, Astron. Astrophys. 566, A72 (2014).

  27. L. S. Lyubimkov, N. S. Polosukhina, and S. I. Rostopchin, Astrophysics 34, 65 (1991).

  28. T. W. R. Monroe, J. Meléndez, I. Ramírez, et al., Astrophys. J. Lett. 774, L32 (2013).

  29. F. D’Antona, ed., The Problem of Lithium, Mem. Soc. Astron. Italiana 62, No. 1 (1991).

  30. S. G. Sousa, N. C. Santos, G. Israelian, et al., ASP Conf. 448, 81 (2011).

  31. P. François, L. Pasquini, K. Biazzo, P. Bonifacio, and R. Palsa, Astron. Astrophys. 552, A136 (2013).

  32. S. Talon and C. Charbonnel, in: C. Charbonnel, M. Tosi, F. Primas, and C. Chiappini, ed., Light Elements in the Universe (IAU Simp. 268), Cambridge Univ. Press (2010), p. 365.

  33. A. Maeder, Physics, Formation and Evolution of Rotating Stars, Springer, Berlin (2009).

  34. L. S. Lyubimkov, D. L. Lambert, S. A. Korotin, et al., Mon. Not. Roy. Astron. Soc. 410, 1774 (2011).

  35. L. S. Lyubimkov, D. L. Lambert, S. A. Korotin, T. M. Rachkovskaya, and D. B. Poklad, Mon. Not. Roy. Astron. Soc. 446, 3447 (2015).

  36. A. Heger and N. Langer, Astrophys. J. 544, 1016 (2000).

  37. S. Ekström, C. Georgy, P. Eggenberger, et al., Astron. Astrophys. 537, A146 (2012).

  38. L. S. Lyubimkov, Astrophysics 20, 255 (1984).

  39. Y. J. Liu, K. F. Tan, L. Wang, et al., Astrophys. J. 785, 94 (2014).

  40. O. A. Gonzalez, M. Zoccali, L. Monaco, et al., Astron. Astrophys. 508, 289 (2009).

  41. R. E. Luck, Astrophys. J. 218, 752 (1977).

  42. D. L. Lambert, J. F. Dominy, and S. Sivertsen, Astrophys. J. 235, 114 (1980).

  43. L. S. Lyubimkov, D. L. Lambert, B. M. Kaminsky, et al., Mon. Not. Roy. Astron. Soc. 427, 11 (2012).

  44. U. Frischknecht, R. Hirschi, G. Meynet, et al., Astron. Astrophys. 522, A39 (2010).

  45. U. Frischknecht, private communication (2011).

  46. I. Iben, Astrophys. J. 147, 624 (1967).

  47. I. Iben, Astrophys. J. 147, 650 (1967).

  48. A. Lèbre, P. de Laverny, J. D. do Nascimento, and J. R. De Medeiros, Astron. Astrophys. 450, 1173 (2006).

  49. R. E. Luck and G. G. Wepfer, Astron. J. 110, 2425 (1995).

  50. Y. B. Kumar, B. E. Reddy, and D. L. Lambert, Astrophys. J. 730, L12 (2011).

  51. J. K. Carlberg, Astron. J. 147, 138 (2014).

  52. C. Schroeder, A. Reiners, and J. H. M. M. Schmitt, Astron. Astrophys. 493, 1099 (2009).

  53. L. S. Lyubimkov, B. M. Kaminskii, V. G. Metlov, et al., Astron. Lett. 41, 809 (2015).

  54. L. Monaco, H. M. J. Boffin, P. Bonifacio, et al., Astron. Astrophys. 564, L6 (2014).

  55. A. Claret, Astron. Astrophys. 424, 919 (2004).

  56. Y. B. Kumar and B. E. Reddy, Astrophys. J. 703, L46 (2009).

  57. S. Simón-Diaz and A. Herrero, Astron. Astrophys. 562, A135 (2014).

  58. G. A. Bragança, S. Daflon, K. Cunha, et al., Astron. J. 144, 130 (2012).

  59. H. A. Abt, H. Levato, and M. Grosso, Astrophys. J. 573, 359 (2002).

  60. A. G. W. Cameron and W. A. Fowler, Astrophys. J. 164, 111 (1971).

  61. D. Romano, F. Matteucci, P. Ventura, and F. D’Antona, Astron. Astrophys. 374, 646 (2001).

  62. F. D’Antona and P. Ventura, in: C. Charbonnel, M. Tosi, F. Primas, and C. Chiappini, ed., Light Elements in the Universe (IAU Simp. 268), Cambridge Univ. Press (2010), p. 395.

  63. V. Silva Aguirre, G. R. Ruchti, S. Hekker, et al., Astrophys. J. 784, L16 (2014).

  64. W. Kley and R. P. Nelson, Ann. Rev. Astron. Astrophys. 50, 211 (2012).

  65. J. K. Carlberg, K. Cunha, V. V. Smith, and S. R. Majewski, Astron. Nachr. 334, 120 (2013).

  66. A. R. Casey, G. Ruchti, T. Masseron, et al., Mon. Not. Roy. Astron. Soc. 2016, in press (arXiv:1603. 03038v1)].

  67. I. I. Romanyuk and D. O. Kudryavtsev, Astrophys. Bull. 63, 139 (2008).

  68. L. S. Lyubimkov, Izv. Krym. astrofiz. obs. 110, 6 (2014), [Bull. Crimean Astrophys. Obs. 110, 9 (2014)].

  69. L. S. Lyubimkov, Astrophysics 56, 472 (2013).

  70. E. Caffau, H.-G. Ludwig, M. Steffen, B. Freytag, and P. Bonifacio, Solar. Phys. 268, 255 (2011).

  71. N. Polosukhina, D. Kurtz, M. Hack, et al., Astron. Astrophys. 351, 283 (1999).

  72. N. S. Polosukhina and A. V. Shavrina, Astrophysics 50, 381 (2007).

  73. P. North, S. Berthet and T. Lanz, Astron. Astrophys. 281, 775 (1994).

  74. N. Nesvacil, T. Luftinger, D. Shulyak, et al., Astron. Astrophys. 537, A151 (2012).

  75. N. Nesvacil, D. Shulyak, T. A. Ryabchikova, et al., Astron. Astrophys. 552, A28 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lyubimkov.

Additional information

Translated from Astrofizika, Vol. 59, No. 3, pp. 459-491 (August 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimkov, L.S. Lithium in Stellar Atmospheres: Observations and Theory. Astrophysics 59, 411–437 (2016). https://doi.org/10.1007/s10511-016-9446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-016-9446-5

Keywords

Navigation