Skip to main content
Log in

Atomic line broadening by thermal energy fluctuations in stellar atmospheres and plasma diagnostics

  • Published:
Astrophysics Aims and scope

A new method for finding the line widths of atomic lines produced by thermal energy fluctuations in a gaseous system is developed assuming that the atomic linear density change in the energy of the levels is equal to the linear density of the energy fluctuations per degree of freedom. A formula is derived for the atomic line widths that depends on temperature, the cubic root of the total number density of particles in the system, and on the sum of the squares of the principal quantum numbers of the states that participate in the transitions that produce the lines. The calculated widths agree well with the published experimental and theoretical values. This formula will be useful for directly diagnosing the physical state of stellar atmospheres and plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Griem, Plasma Spectroscopy, New York, McGraw-Hill, 1964.

    Google Scholar 

  2. H. R. Griem, Spectral Line Broadening by Plasmas, New York, Academic Press, 1974.

    Google Scholar 

  3. D. Mihalas, Stellar Atmospheres, San Francisco, Freeman, 1978.

    Google Scholar 

  4. I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Berlin, Springer-Verlag, 1981.

    Book  Google Scholar 

  5. T. Fujimoto, Plasma Spectroscopy, Oxford, Claredon Press, 2004.

    Book  MATH  Google Scholar 

  6. O. Cardona, E. Simonneau, and L. Crivellari, Rev. Mex. Fis., 51, 476, 2005.

    Google Scholar 

  7. O. Cardona, Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics, ed I. Hubeny, J. M. Stone, K. MacGregor, and K. Werner, New York, AIP Proceedings, 1171, 2009, p.349.

  8. A. Einstein and Jb. Radioakt., 4, 411, 1907.

  9. L. D. Landau and E. M. Lifshitz, Statistical Physics, Oxford, Pergamon Press, 1980.

    Google Scholar 

  10. R. K. Pathria, Statistical Mechanics, Oxford, Pergamon Press, 1972.

    Google Scholar 

  11. C. Kittel and H. Kroemer, Thermal Physics, New York, W. H. Freeman, 1980.

    Google Scholar 

  12. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, Harlow, Prentice-Hall, 2003, p.162.

    Google Scholar 

  13. A. Unsöld, Physik der Sternatmosphären (Berlin: Springer-Verlag), 1955.

  14. R. B. Leighton, Principles of Modern Physics, New York, McGraw-Hill, 1959, p.180.

    Google Scholar 

  15. NIST, 2010, Data http://www.physics.nist.gov/PhysRefData/Handbook/Tables

  16. TOP, 2010, http://cdsweb.u-strasbg.fr/topbase/topbase.html

  17. O. Cardona, E. Simonneau, and L. Crivellari, Astrophys. J., 695, 85, 2009.

    Article  ADS  Google Scholar 

  18. K. Grützmacher and B. Wende, Phys. Rev., A11, 1854, 1975.

    Google Scholar 

  19. K. Grützmacher and B. Wende, Spectral Line Shapes v.4, Ontario, Windsor, 1978, p.49.

  20. K. Grützmacher and U. Johannsen, Spectral Line Shapes v.7, ed R. Stamm and B. Talin, New York, Nova Science Publishers, 1993, p.139.

  21. M. A. Gigosos and V. Cardenosos, J. Phys., B29, 4795, 1996

    ADS  Google Scholar 

  22. W. L. Wiese, D. E. Kelleher, and D. R. Paguette, Phys. Rev., A6, 1132, 1972.

    ADS  Google Scholar 

  23. Y. Vitel and J. Phys., B20, 2327, 1987.

  24. S. Büscher, Th. Wrubel, S. Ferri, and H. -J. Kunze, J. Phys., B35, 2889, 2002.

    ADS  Google Scholar 

  25. C. R. Vidal, J. Cooper, and E. W. Smith, Astrophys. J. Suppl. Ser., 25, 37, 1973.

    Article  ADS  Google Scholar 

  26. H. R. Griem, Principles of Plasma Spectroscopy, Cambridge. Cambridge Univ. Press, 1997.

    Book  Google Scholar 

  27. H. R. Griem and K. Y. Shen, Phys. Rev., 122, 1490, 1961.

    Article  ADS  Google Scholar 

  28. T. L. Pittman and C. Fleurier, Phys. Rev., A33, 1291, 1986.

    ADS  Google Scholar 

  29. H. G. Adler, A. Piel, and J. Quant. Spectrosc. Radiat. Transfer, 45, 11, 1991.

    Article  ADS  Google Scholar 

  30. D. W. Jones and W. L. Wiese, Phys. Rev., A30, 2602, 1984.

    ADS  Google Scholar 

  31. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas From 296 to 1300 nm, National Solar Observatory Atlas NO. 1, Cambridge, Harvard University, 1984.

  32. O. Cardona, E. Simonneau, and L. Crivellari, Astrophys. J., 690, 1378, 2009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Cardona.

Additional information

Published in Astrofizika, Vol. 54, No. 1, pp. 89–101 (February 2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, O. Atomic line broadening by thermal energy fluctuations in stellar atmospheres and plasma diagnostics. Astrophysics 54, 75–86 (2011). https://doi.org/10.1007/s10511-011-9159-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-011-9159-8

Key words

Navigation