Skip to main content
Log in

Accretion magnetar in the close binary system 4U 2206+54

  • Published:
Astrophysics Aims and scope

The magneto-rotational evolution of a neutron star in the massive binary system 4U 2206+54 is discussed in light of the recent discovery of its 5555 s rotational period and its average rate of spin-down. We show that this behavior of the neutron star means that its magnetic field exceeds the quantum mechanical critical limit and it is an accretion magnetar. The system’s evolution is explained by wind driven mass transfer without formation of an accretion disk. The constant character of the x-ray source indicates a steady rate of accretion and raises anew the question of the stability of the boundary of the magnetosphere of a star undergoing spherical accretion. A solution to this problem is also a key to determining the mechanism for the slowing down of the star’s rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ribó, I. Negueruela, P. Blay, et al., Astron. Astrophys. 449, 687 (2006).

    Article  ADS  Google Scholar 

  2. R. Giacconi, S. Murray, H. Gursky, et al., Astrophys. J. 178, 281 (1972).

    Article  ADS  Google Scholar 

  3. P. Rieg, J. M. Torrejón, I. Negueruela, et al., Astron. Astrophys. 494, 1073 (2009.

    Article  ADS  Google Scholar 

  4. M. H. Finger, N. R. Ikhsanov, C. A. Wilson-Hodge, and S. K. Patel, Astrophys. J. 709, 1249 (2010).

    Article  ADS  Google Scholar 

  5. N. I. Shakura, Pis’ma v Astron. zh. 1, 23 (1975).

    ADS  Google Scholar 

  6. V. M. Lipunov and N. I. Shakura, Pis’ma v Astron. zh. 2, 343 (1976).

    ADS  Google Scholar 

  7. I. Jr. Iben, A. V. Tutukov, and L. R. Yungelson, Astrophys. J. Suppl. Ser. 100, 217 (1995).

    Article  ADS  Google Scholar 

  8. G. S. Bisnovatyi-Kogan and A. V. Tutukov, Astron. zh. 81, 797 (2004).

    Google Scholar 

  9. S. G. Moiseenko, G. S. Bisnovatyi-Kogan, and N. V. Ardeljan, Mon. Notic. Roy. Astron. Soc. 370, 501 (2006).

    ADS  Google Scholar 

  10. D. R. Lorimer, A. J. Faulker, A. J. Lyne, et al., Mon. Notic. Roy. Astron. Soc. 372, 777 (2006).

    Article  ADS  Google Scholar 

  11. V. F. Shvartsman, Radiofizika 13, 1852 (1970).

    Google Scholar 

  12. K. Davidson and J. P. Ostriker, Astrophys. J. 179, 585 (1973).

    Article  ADS  Google Scholar 

  13. A. F. Illarionov and R. A. Sunyaev, Astron. Astrophys. 39, 185 (1975).

    ADS  Google Scholar 

  14. P. Ghosh and F. K. Lamb, Astrophys. J. 223, L83 (1978).

    Article  ADS  Google Scholar 

  15. R. E. Davies and J. E. Pringle, Mon. Notic. Roy. Astron. Soc. 196, 209 (1981).

    ADS  Google Scholar 

  16. R. F. Elsner and F. K. Lamb, Nature, 262, 356 (1976).

    Article  ADS  Google Scholar 

  17. J. Arons and S. M. Lea, Astrophys. J. 207, 914 (1976).

    Article  ADS  Google Scholar 

  18. N. R. Ikhsanov, Astron. Astrophys. 368, L5 (2001).

    Article  ADS  Google Scholar 

  19. V. M. Lipunov, Astrophysics of Neutron Stars [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  20. N. R. Ikhsanov, Astrofizika 48, 477 (2005).

    Google Scholar 

  21. D. J. Price and S. Rosswog, Science, 312, 719 (2006).

    Article  ADS  Google Scholar 

  22. A. Bonanno, V. Urpin, and G. Belvedere, Astron. Astrophys. 451, 1049 (2006).

    Article  ADS  Google Scholar 

  23. M. Colpi, U. Geppert, and D. Page, Astrophys. J. 529, L29 (2000).

    Article  ADS  Google Scholar 

  24. M. Ruffert, Astron. Astrophys. 346, 861 (1999).

    ADS  Google Scholar 

  25. J. M. Torrejón, I. Kreykenbohm, A. Orr, et al., Astron. Astrophys. 423, 301 (2004).

    Article  ADS  Google Scholar 

  26. R. F. Elsner, P. Ghosh, and F. K. Lamb, Astrophys. J. 241, L155 (1980).

    Article  ADS  Google Scholar 

  27. N. R. Ikhsanov, Mon. Notic. Roy. Astron. Soc. 375, 698 (2007).

    Article  ADS  Google Scholar 

  28. V. M. Lipunov, Astron. zh. 59, 888 (1982).

    ADS  Google Scholar 

  29. G. S. Bisnovatyi-Kogan, Astron. Astrophys. 245, 528 (1991).

    ADS  Google Scholar 

  30. R. C. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992).

    Article  ADS  Google Scholar 

  31. A. Camero-Arranz, M. H. Finger, N. R. Ikhsanov, et al., Astrophys. J. 708, 1500 (2010).

    Article  ADS  Google Scholar 

  32. F. K. Lamb, A. C. Fabian, J. E. Pringle, and D. Q. Lamb, Astrophys. J. 217 (197 (1977).

    Article  ADS  Google Scholar 

  33. N. R. Ikhsanov, Astron. Astrophys. 375, 944 (2001).

    Article  ADS  Google Scholar 

  34. F. C. Michel, Astrophys. J. 216, 838 (1977).

    Article  ADS  Google Scholar 

  35. D. J. Burnard, S. M. Lea, and J. Arons, Astrophys. J. 266, 175 (1983).

    Article  ADS  Google Scholar 

  36. P. Blay, I. Negueruela, P. Rieg, et al., Astron. Astrophys. 446, 1095 (2006).

    Article  ADS  Google Scholar 

  37. R. H. D. Corbet, C. B. Markwardt, and J. Tueller, Astrophys. J. 655, 458 (2007).

    Article  ADS  Google Scholar 

  38. I. Negueruela and P. Rieg, Astron. Astrophys. 371, 1056 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Ikhsanov.

Additional information

Translated from Astrofizika, Vol. 53, No. 2, pp. 269-284 (May 2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikhsanov, N.R., Beskrovnaya, N.G. Accretion magnetar in the close binary system 4U 2206+54. Astrophysics 53, 237–250 (2010). https://doi.org/10.1007/s10511-010-9115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-010-9115-z

Keywords

Navigation