Skip to main content
Log in

Acceleration and ejection of ring vortices as a mechanism for formation of jet components in AGN

  • Published:
Astrophysics Aims and scope

Exact solutions are obtained for the two-dimensional hydrodynamic equations for symmetric configurations of two and four vortices in the presence of an arbitrary flow with a point singularity. These solutions describe the dynamics of a dipole toroidal vortex in accretion and wind flows within the active nuclei of galaxies. It is shown that in a converging (accretion) flow, as they are compressed along their major radius, toroidal vortices are ejected with acceleration along the axis of symmetry of the active nucleus, to form the components of a bilateral jet. For a symmetric flow, the increase in the velocity of the vortices is determined by the monopole component of the flow, and, when there is an asymmetry in the flow, also by the dipole component of the flow, which controls the asymmetry of the ejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Dagkesamanskii, ed., Physics of Extragalactic Radio Sources [in Russian], Mir, Moscow (1987).

    Google Scholar 

  2. V. S. Beskin, MHD Flows in Compact Astrophysical Objects, Springer, 2010, 425 p; Axially Symmetric Stationary Flows in Astrophysics [in Russian], Fizmatlit, Moscow (2006).

    Google Scholar 

  3. G. Bisnovatyi-Kogan and A. Ruzmaikin, Astrophys. Space Sci. 42, 401 (1976).

    Article  ADS  Google Scholar 

  4. R. D. Blandford, Mon. Notic. Roy. Astron. Soc. 176, 465 (1976).

    ADS  Google Scholar 

  5. R. V. E. Lovelace, Nature 262, 649 (1976).

    Article  ADS  Google Scholar 

  6. D. Lynden-Bell, Phil. Trans. R. Soc. Lond. A 358, 635 (2000); Mon. Notic. Roy. Astron. Soc. 279, 389 (1996).

    Article  ADS  Google Scholar 

  7. R. D. Blandford, Phil. Trans. R. Soc. Lond. A 358, 811 (2000).

    Article  ADS  Google Scholar 

  8. I. F. Mirabel, Phil. Trans. R. Soc. Lond. A 358, 841 (2000); arXiv:0805.2378v2.

    Article  ADS  Google Scholar 

  9. R. E. Pudritz, Phil. Trans. R. Soc. Lond. A 358, 741 (2000).

    Article  ADS  Google Scholar 

  10. G. V. Ustyugova, R. V. E. Lovelace, M. M. Romanova, H. Li, and S. A. Colgate, Astrophys. J. 541, 21 (2000).

    Article  ADS  Google Scholar 

  11. M. G. Abrahamyan, Astrofizika 51, 201, 431, 617 (2008).

    Google Scholar 

  12. G. V. Vermeulen and M. H. Cohen, Astrophys. J. 430, 467 (1994).

    Article  ADS  Google Scholar 

  13. M. Livio, Physics Reports 311, 225 (1999).

    Article  ADS  Google Scholar 

  14. A. G. Pacholczyk, Radio Astrophysics, Freeman & Company, San Francisco (1970); [in Russian], Mir, Moscow (1973); Radio Galaxies, Pergamon Press, Oxford (1977); [in Russian], Mir, Moscow (1980).

  15. E. Yu. Bannikova and V. M. Kontorovich, Physics Letters A 373, 1856 (2009).

    Article  ADS  Google Scholar 

  16. E. Yu. Bannikova, V. M. Kontorovich, and G. M. Reznik, ZhÉTF 132, 615 (2007).

    Google Scholar 

  17. E. Yu. Bannikova and V. M. Kontorovich, Astron. zh. 84, 298 (2007); astroph/0707.1478

    Google Scholar 

  18. A. Sommerfeld, Mechanics of Deformable Fluid, AcademicPress, NewYork (1950); Mechanics of Deformable Media [Russian translation], IL, Moscow (1954), p. 486.

    Google Scholar 

  19. I. F. Mirabel, L. F. Rodriguez, B. Cordier, J. Paul, and F. Lebrun, Nature 358, 215 (1992).

    Article  ADS  Google Scholar 

  20. G. Reznik and Z. Kizner, Theor. Comput. Fluid Dyn. 23, Nos. 5-6 (2009).

  21. V. V. Meleshko, Theor. Comput. Fluid Dyn. 24, Nos. 1-4, 65-75 (2010).

    Article  Google Scholar 

  22. H. Lamb, Hydrodynamics, 6thed., Dover, NewYork, 1932; [Russian translation], Gostekhizdat, Moscow (1947).

  23. A. V. Borisov and I. S. Mamaev, Mathematical Methods in the Dynamics of Vortex Structures [in Russian], Inst. of Computer Research, Moscow-Izhevsk (2005).

  24. V. V. Meleshko and M. Yu. Konstantinov, Dynamics of Vortex Structures [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  25. W. Gröbli, Naturforsch. Geselsch. 22, 37 (1887).

    Google Scholar 

  26. R. R. J. Antonucci and J. S. Miller, Astrophys. J. 297, 621 (1985).

    Article  ADS  Google Scholar 

  27. R. Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993).

    ADS  Google Scholar 

  28. W. Jaffe, K. Meisenheimer, H. J. A. Rottgering, et al. Nature 429, 47 (2004).

    Article  ADS  Google Scholar 

  29. M. Elitzur, IR Emission from AGNs (Review), astro-ph/0512025.

  30. P. G. Saffman, Vortex Dynamics CUP, Cambridge (1992); [Russian translation], Nauchnyi Mir, Moscow (2000).

  31. Yu. L. Bolotin, A. V. Tur, and V. V. Yanovsky, Constructive Chaos [in Russian], Izd-vo. Instituta Monokrystallov, Kharkiv (2005); Yu. Bolotin, A. Tur, and V. Yanovsky, Chaos: Concepts, Control and Constructive Use, Springer (2009).

  32. A. P. Marsher and S. G. Érshtadt, in: Astronomy: Traditions, Present, and Future [in Russian], Izd-vo. SPbGU, St. Petersburg (2007).

  33. N. G. Bochkarev, Elements of the Physics of the Interstellar Medium [in Russian], Izd. MGU, Moscow (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Poslavsky.

Additional information

Translated from Astrofizika, Vol. 53, No. 2, pp. 201-215 (May 2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poslavsky, S.A., Bannikova, E.Y. & Kontorovich, V.M. Acceleration and ejection of ring vortices as a mechanism for formation of jet components in AGN. Astrophysics 53, 174–188 (2010). https://doi.org/10.1007/s10511-010-9110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-010-9110-4

Keywords

Navigation