Skip to main content
Log in

Vortical mechanism for generation of astrophysical jets

  • Published:
Astrophysics Aims and scope

Abstract

A vortical mechanism for generation of astrophysical jets is proposed based on exact solutions of the hydrodynamic equations with a generalized Rankine vortex. It is shown that the development of a Rankine vortex in the polar layer of a rotating gravitating body creates longitudinal fluxes of matter that converge toward the vortex trunk, providing an exponential growth in the angular rotation velocity of the trunk and a pressure drop on its axis. The increased rotational velocity of the vortex trunk and the on-axis pressure drop cease when the discontinuity in the azimuthal velocity at the surface of the trunk reaches the sound speed. During this time, ever deeper layers of the gravitating body are brought into the vortical motion, while the longitudinal velocity of the flow along the vortex trunk builds up, producing jet outflows of mass from its surface. The resulting vortices are essentially dissipationless.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Das, astro-ph/9906113.

  2. R. Gonzalez, E. M. Gouveia Dal Pino, A. Raga, and P. Velazquez, Astrophys. J. 600, L59 (2004).

    Article  ADS  Google Scholar 

  3. N. Soker, Astron. Astrophys. 414, 943 (2004).

    Article  ADS  Google Scholar 

  4. S. Redeem and T. Iran, Astrophys. J. 519, L17 (1999).

    Article  Google Scholar 

  5. P. Mészáros, Ann. Rev. Astron. Astrophys. 40, 137 (2002).

    Article  Google Scholar 

  6. K. Shibta and S. Aoki, astro-ph/0303253.

  7. A. Königl, Can. J. Phys. 64, 362 (1986).

    ADS  Google Scholar 

  8. E. M. Gouveia Dal Pino, in: Plasma Physics and Controlled Fusion, AIP Procs. 345, 427 (1995).

  9. A. Bridle, in: Impact of the VLA: Physics of AGN Jets (http://www.cv.nrao.edu/~abridle/bgctalk) (1998).

  10. B. Reipurth and J. Bally, Ann. Rev. Astron. Astrophys. 39, 403 (2001).

    Article  ADS  Google Scholar 

  11. S. Bontemps, P. Andre, S. Terebey, and S. Cabrit, Astron. Astrophys. 311, 858 (1996).

    ADS  Google Scholar 

  12. C. J. Lada, in: The Origin of Stars and Planetary Systems., C. J. Lada and N. D. Kylafis, eds., Kluwer Academic Publ. (1999), p. 143.

  13. D. Devine, B. Reipurth, J. Bally, and S. Heathcote, Astron. J. 114, 2095 (1997).

    Article  ADS  Google Scholar 

  14. A. C. Raga, Astrophys. Space. Sci. 208, 163 (1993).

    Article  ADS  Google Scholar 

  15. B. Reipurth, Nature 340, 42 (1989).

    Article  ADS  Google Scholar 

  16. F. Bacciotti and J. Eislöffel, Astron. Astrophys. 342, 717 (1999).

    ADS  Google Scholar 

  17. J. A. Morse, P. Hartigan, G. Cecil, J. C. Raymond, and S. Heathcote, Astrophys. J. 339, 231 (1992).

    Article  ADS  Google Scholar 

  18. E. S. Perlman, J. A. Biretta, F. Zhou, W. B. Sparks, and D. Macchetto, Astron. J. 117, 2185 (1999).

    Article  ADS  Google Scholar 

  19. G. S. Bisnovatyi-Kogan, in: Stellar Jets and Bipolar Outflows, L. Errico and A. A. Vittone, eds., Kluwer, Dordrecht (1993), p. 369.

    Google Scholar 

  20. G. S. Bisnovatyi-Kogan, B. V. Komberg, and A. M. Fridman, Astron. zh. 46, 465 (1969).

    ADS  Google Scholar 

  21. G. S. Bisnovatyi-Kogan, Astrophys. 47, 404 (2004).

    Article  ADS  Google Scholar 

  22. G. S. Bisnovatyi-Kogan, Mon. Notic. Roy. Astron. Soc. 376, 457 (2007).

    Article  ADS  Google Scholar 

  23. P. K. Kundu, Liquid Mechanics. Academic Press Inc (1990), p. 638.

  24. E. A. Pashitskii, V. N. Malnev, and R. A. Naryshkin, arXiv:physics/0702229v1, 26 Feb. 2007.

  25. M. G. Abrahamyan, Astrofizika (2008) (in press).

  26. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium [Russian translation], Mir, Moscow (1973), 288 pp.

    MATH  Google Scholar 

  27. W. J. M. Rankine, Phil. Mag. Ser. 4, 39, 211 (1870).

    Google Scholar 

  28. V. V. Meleshko and M. Yu. Konstantinov, Dynamics of Vortical Structures [in Russian], Naukova Dumka, Kiev (1993), 282 pp.

    Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Hydrodynamics [in Russian], Nauka, Moscow (1986), 736 pp.

    Google Scholar 

  30. F. Gueth and S. Guilloteau, Astron. Astrophys. 343, 571 (1999).

    ADS  Google Scholar 

  31. R. Bachiller, J. Martin-Pintado et al., Astron. Astrophys. 231, 174 (1990).

    ADS  Google Scholar 

  32. B. Nisini, M. Benedettini et al., Astron. Astrophys. 360, 297 (2000).

    ADS  Google Scholar 

  33. C. R. Masson, L. G. Mundi, and J. Keene, Astrophys. J. 357, L25 (1990).

    Article  ADS  Google Scholar 

  34. R. Bachiller, S. Guilloteau et al., Astron. Astrophys. 339, L49 (1998).

    ADS  Google Scholar 

  35. B. C. Koo, Astrophys. J. 361, 145 (1990).

    Article  ADS  Google Scholar 

  36. J. Cernicharo and B. Reipurth, Astrophys. J. 460, L57 (1996).

    Article  ADS  Google Scholar 

  37. J. Hatchell, G. A. Fuller, and E. F. Ladd, Astron. Astrophys. 346, 278 (1999).

    ADS  Google Scholar 

  38. M. G. Abrahamyan, Astrofizika (2008), (in press).

  39. M. G. Abrahamyan, Astrofizika (2008), (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Abrahamyan.

Additional information

Dedicated to the 100-th birthday of Academician V. A. Ambartsumyan

__________

Translated from Astrofizika, Vol. 51, No. 2, pp. 201–218 (May 2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrahamyan, M.G. Vortical mechanism for generation of astrophysical jets. Astrophysics 51, 163–180 (2008). https://doi.org/10.1007/s10511-008-9013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-008-9013-9

Keywords

Navigation