Skip to main content
Log in

Color functions of stellar systems

  • Published:
Astrophysics Aims and scope

Abstract

Model calculations of the photometric evolution of rather dense stellar systems, such as globular clusters, are presented. On “luminosity-effective temperature” diagrams of these systems, low-mass stars are concentrated near the minimum and maximum temperatures for a given luminosity and are deficient in the intermediate region. This sort of double-peaked distribution of the stars can be avoided in open models with ejection of excess metals into the surrounding medium. The distributions of the stars with respect to effective temperature on a “ luminosity-effective temperature” diagram are sensitive to the history of star formation in the system and to possible time variations in the initial mass function. In open systems with a single-peak distribution function, the asymmetry in the distribution varies over wide limits with the lower bound for the initial mass function and this can be used to establish whether the first generations of stars might have been more massive than in the present epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Piotto, I. R. King, S. G. Djorgovski et al., Astron. Astrophys. 391, 945 (2002).

    Article  ADS  Google Scholar 

  2. R. F. G. Wyse, preprint astro-ph/0501138 (2005).

  3. L. Greggio and A. Renzini, Astron. Astrophys. 118, 217 (1983).

    ADS  Google Scholar 

  4. R. C. Kennicutt, Jr., in: The Interstellar Medium in Galaxies, J. M. van der Hulst, ed., Kluwer, Doordrecht (1997), p. 171.

    Google Scholar 

  5. R. C. Kennicutt, Astrophys. J. 498, 451 (1998).

    ADS  Google Scholar 

  6. D. P. Cox, Astrophys. J. 265, L61 (1983).

    Article  ADS  Google Scholar 

  7. M. V. Kasyanova and Yu. A. Shchekinov, Astron. zh. 82, 1 (2005).

    Google Scholar 

  8. E. E. Salpeter, Astrophys. J. 121, 161 (1955).

    Article  ADS  Google Scholar 

  9. P. Kroupa, Mon. Notic. Roy. Astron. Soc. 322, 231 (2001).

    Article  ADS  Google Scholar 

  10. R. B. Larson, Mon. Notic. Roy. Astron. Soc. 359, 211 (2005).

    Article  ADS  Google Scholar 

  11. R. B. Larson, in: Star Formation from the Small to the Large Scale, F. Favata, A. A. Kaas, and A. Wilson, eds., The Netherlands, Noordwijk (2000), p. 13.

    Google Scholar 

  12. V. Bromm and R. B. Larson, Ann. Rev. Astron. and Astrophys. 42, 79 (2004).

    ADS  Google Scholar 

  13. F. Matteucci and L. Greggio, Astron. Astrophys. 154, 279 (1989).

    ADS  Google Scholar 

  14. C. Firmani and A. V. Tutukov, Astron. Astrophys. 264, 37 (1992).

    ADS  Google Scholar 

  15. B. M. Shustov, D. S. Wiebe, and A. V. Tutukov, Astron. Astrophys. 317, 397 (1997).

    ADS  Google Scholar 

  16. C. Chiappini, F. Matteucci, and R. Gratton, Astrophys. J. 477, 765 (1997).

    Article  ADS  Google Scholar 

  17. L. Greggio and A. Renzini, Astron. Astrophys. 118, 217 (1983).

    ADS  Google Scholar 

  18. S. E. Woosley and T. A. Weaver, Astrophys. J. Suppl. Ser. 101, 181 (1995).

    Article  ADS  Google Scholar 

  19. K. Nomoto, M. Hashimoto, T. Tsujimoto, and F.-K. Thielemman, Nucl. Phys. A. 616, 79 (1997).

    ADS  Google Scholar 

  20. L. Girardi, A. Bressan, C. Chiosi, G. Bertelli, and E. Nasi, Astron. Astrophys. Suppl. Ser. 117, 113 (1996).

    Article  ADS  Google Scholar 

  21. F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi, Astron. Astrophys. Suppl. Ser. 104, 365 (1994).

    ADS  Google Scholar 

  22. F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi, Astron. Astrophys. Suppl. Ser. 105, 29 (1994).

    ADS  Google Scholar 

  23. F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi, Astron. Astrophys. Suppl. Ser. 105, 39 (1994).

    ADS  Google Scholar 

  24. A. Bressan, F. Fagotto, G. Bertelli, and C. Chiosi, Astron. Astrophys. Suppl. Ser. 100, 647 (1993).

    ADS  Google Scholar 

  25. D. Vandenbergh, F. Harteick, and P. Dawson, Astrophys. J. 266, 747 (1983).

    ADS  Google Scholar 

  26. T. Lejeune, F. Cuisiner, and R. Buser, Astron. Astrophys. Suppl. Ser. 125, 229 (1997).

    Article  ADS  Google Scholar 

  27. T. Lejeune, F. Cuisiner, and R. Buser, Astron. Astrophys. Suppl. Ser. 130, 65 (1998).

    Article  ADS  Google Scholar 

  28. R. E. S. Clegg and D. Middlemass, Mon. Notic. Roy. Astron. Soc. 228, 759 (1987).

    ADS  Google Scholar 

  29. G. A. Bruzual, Galaxies at High Redshift, Proc. XI Canary Islands Winter School of Astrophysics, I. Perez-Fournon, M. Balcells, F. Moreno-Insertis, and F. Sanchez, eds., Cambridge Univ. Press, Cambridge (2003), p. 185.

    Google Scholar 

  30. G. Parmentier, E. Jehin, P. Magain et al., Astron. Astrophys. 352, 138 (1999).

    ADS  Google Scholar 

  31. E. Jehin, P. Magain, C. Neuforge et al., Astron. Astrophys. 330, L33 (1998).

    ADS  Google Scholar 

  32. E. Jehin, P. Magain, C. Neuforge et al., Astron. Astrophys. 341, 241 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astrofizika, Vol. 49, No. 1, pp. 139–150 (February 2006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasjanova, M.V., Shchekinov, Y.A. Color functions of stellar systems. Astrophysics 49, 120–130 (2006). https://doi.org/10.1007/s10511-006-0013-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-006-0013-3

Keywords

Navigation