Skip to main content
Log in

Magnetic field structure and accretion regimes of the asynchronous polar by Cam

  • Published:
Astrophysics Aims and scope

Abstract

Series of photometric CCD observations of the asynchronous polar BY Cam in a low accretion state (R = 14m–16m) were made on the K-380 telescope at the Crimean Astrophysical Observatory (CrAO) over 100 hours in the course of 31 nights during 2004–2005. A period of P 1 = 0.137120±0.000002 days was found for the variations in the brightness, along with less significant periods of P 2 = 0.139759±0.000003 and P3 = 0.138428±0.000002 days, where P2 and P3 are obviously the orbital and rotation periods, while the dominant period P1 is the sideband period. A modulation in the brightness and an amplitude of 0.137 days in the oscillations at the orbital-rotational beat period (synodic cycle) of 14.568±0.003 day are found for the first time. The profile of the modulation period is four humped. This indicates that the magnetic field has a quadrupole component, which shows up well during the low brightness state. Accretion takes place simultaneously into two or three accretion zones, but at different rates. The times of the times of maxima for the main accretion zone vary with the phase of the beat period. Three types of variation of this sort are distinguished: linear, discontinuous, and chaotic, which indicate changes in the accretion regimes. At synodic phases 0.25 and 0.78 the bulk of the stream switches by 180°, and at phase 0.55, by ∼75°. At phases of 0.25–0.55 and 0.55–0.78, the O-C shift with a period of 0.1384 days, which can be explained by a retrograde shift of the main accretion zone relative to the magnetic pole and/or a change in the angle between the field lines and the surface of the white dwarf owing to the asynchronous rotation. For phases of 0.78–1.25 the motion of the accretion zone is quite chaotic. It is found that synchronization of the components occurs at a rate of less than dProt/Prot∼10−9 day/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars, Cambridge Univ. Press, Cambridge (1995).

    Google Scholar 

  2. G. Schmidt, J. Liebert, and H. S. Stockman, Astrophys. J. 441, 414 (1995).

    Article  ADS  Google Scholar 

  3. A. Silber, R. A. Remillard, H. V. Bradt et al., Astrophys. J. 389, 704 (1992).

    Article  ADS  Google Scholar 

  4. H. S. Stockman, G. D. Schmidt, and D. Q. Lamb, Astrophys. J. 332, 282 (1988).

    Article  ADS  Google Scholar 

  5. J. Patterson, D. R. Skillman, J. Thorstensen, and C. Hellier, Publ. Astron. Soc. Pacif. 107, 307 (1995).

    ADS  Google Scholar 

  6. A. Schwope, D. A. H. Buckley, D. O’Donoughue et al., Astron. Astrophys. 326, 195 (1997).

    ADS  Google Scholar 

  7. E. P. Pavlenko and J. Pelt, Astrofizika 34, 169 (1991).

    ADS  Google Scholar 

  8. E. P. Pavlenko, Odessa Astronom. Publ. 16, 41 (2003).

    Google Scholar 

  9. G. Ramsay, S. Potter, and M. Cropper, Mon. Notic. Roy. Astron. Soc. 316, 225 (2000).

    Article  ADS  Google Scholar 

  10. S. Friedrich, R. Staubert, G. Lamer et al., Astron. Astrophys. 306, 860 (1996).

    ADS  Google Scholar 

  11. A. Silber, P. Szkody, D. W. Hoard. et al., Mon. Notic. Roy. Astron. Soc. 290, 25 (1997).

    ADS  Google Scholar 

  12. M. Ishida, A. Silber, H. V. Bradt, R. A. Remillard et al., Astrophys. J. 367, 270 (1991).

    Article  ADS  Google Scholar 

  13. P. A. Mason, Ph. D. Thesis, Case Western Reserve Univ. (1996).

  14. P. A. Mason, J. Liebert, and G. D. Schmidt, Astrophys. J. 346, 941 (1989).

    Article  ADS  Google Scholar 

  15. P. A. Mason, I. L. Andronov, S. V. Kolesnikov et al., ASP Conf. Ser. 85 (1995).

  16. V. Piirola, G. V. Coyne, S. J. L. Takalo, S. Larsson, and O. Vilhu, Astron. Astrophys. 283, 163 (1994).

    ADS  Google Scholar 

  17. P. Szkody, R. A. Downes, and M. Mateo, Publ. Astron. Soc. Pacif. 102, 1310 (1990).

    ADS  Google Scholar 

  18. E. P. Pavlenko and S. Yu. Shugarov, Astrophys. Space Sci. Libr. 208, 217 (1996).

    ADS  Google Scholar 

  19. E. P. Pavlenko, Astrophys. Space Sci. Libr. 330, 503 (2005).

    Google Scholar 

  20. E. P. Pavlenko, S. Yu. Shugarov, and N. A. Kamysheva, Astrofizika 43, 567 (2000).

    Google Scholar 

  21. Ja. Pelt, Frequency Analysis of Astronomical Time Series, Valgus Publ., Tallinn (1980).

    Google Scholar 

  22. G. A. Wynn and A. R. King, Mon. Notic. Roy. Astron. Soc. 255, 83 (1992).

    ADS  Google Scholar 

  23. E. P. Pavlenko and S. Yu. Shugarov, Astrophys. Space Sci. Libr. 330, 421 (2005).

    Google Scholar 

  24. V. Marsakova and L. I. Andronov, Odessa Astronom. Publ. 9, 127 (1996).

    ADS  Google Scholar 

  25. M. M. Basko and R. A. Sunyaev, Astrophys. Space Sci. 23, 71 (1973).

    Article  ADS  Google Scholar 

  26. R. D. Geckeler and R. Staubert, Astron. Astrophys. 325, 1070 (1997).

    ADS  Google Scholar 

  27. P. A. Mason, G. Ramsay, I. Andronov et al., Mon. Notic. Roy. Astron. Soc. 295, 511 (1998).

    Article  ADS  Google Scholar 

  28. D. T. Wickramasinghe and K. Wu, Mon. Notic. Roy. Astron. Soc. 253, 11 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astrofizika, Vol. 49, No. 1, pp. 121–137 (February 2006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlenko, E.P. Magnetic field structure and accretion regimes of the asynchronous polar by Cam. Astrophysics 49, 105–119 (2006). https://doi.org/10.1007/s10511-006-0012-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-006-0012-4

Keywords

Navigation