Skip to main content
Log in

Spots, activity cycles, and differential rotation on cool stars

  • Published:
Astrophysics Aims and scope

Abstract

The first results are reported from a search for activity cycles in stars similar to the sun based on modelling their spotting with an algorithm developed at the Crimean Astrophysical Observatory. Of the more than thirty program stars, 10 manifested a cyclical variation in their central latitudes and total starspot area. The observed cycles have durations of 4–15 years, i.e., analogous to the 11 year Schwabe sunspot cycle. Most of the stars have a rough analog of the solar butterfly pattern, with a reduction in the average latitude of the spots as their area increases. A flip-flop effect during the epoch of the maximum average latitude is noted in a number of these objects (e.g., the analog LQ Hya of the young sun or the RS CVn-type variable V711 Tau), as well as a reduction in the photometric rotation period of a star as the spots drift toward the equator, an analog of the differential rotation effect in the sun. Unlike in the sun, the observed spot formation cycles do not correlate uniquely with other indicators of activity— chromospheric emission in the CaII HK lines (Be Cet, EK Dra, Dx Leo), Hα line emission (LQ Hya, VY Ari, EV Lac), or cyclical flare activity (EV Lac). In V833 Tau, BY Dra, EK Dra, and VY Ari short Schwabe cycles coexist with long cycles that are analogous to the Gleissberg solar cycle, in which the spotted area can approach half the entire area of the star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. F. Chugainov, Izv. Krym. astrofiz. observ. 48, 3 (1973).

    Google Scholar 

  2. M. J. Phillips and L. Hartmann, Astrophys. J. 224, 182 (1978).

    Google Scholar 

  3. I. Yu. Alekseev and R. E. Gershberg, The Earth and the Universe, G. Asteriadis, A. Bantelas, M. E. Contadakis et al., eds., Thessaloniki, Ziti Editions, 43 (1997).

    Google Scholar 

  4. S. V. Berdyugina, J. Pelt, and I. Tuominen, Astron. Astrophys. 394, 505 (2002).

    Google Scholar 

  5. I. Yu. Alekseev and R. E. Gershberg, Astron. zh. 73, 579 (1996).

    Google Scholar 

  6. I. Yu. Alekseev and R. E. Gershberg, Astron. zh. 73, 589 (1996).

    Google Scholar 

  7. S. Messina and E. F. Guinan, Astron. Astrophys. 393, 225 (2002).

    Google Scholar 

  8. L. Hartmann, B. W. Bopp, M. Dussault et al., Astrophys. J. 249, 662 (1981).

    Google Scholar 

  9. S. Messina and E. F. Guinan, Astron. Astrophys. 409, 1017 (2003).

    Google Scholar 

  10. K. Oláh, Z. Kolláth, and K. G. Strassmeier, Astron. Astrophys. 356, 643 (2000).

    Google Scholar 

  11. L. N. Mavridis, G. Asteriadis, and F. M. Mahmoud, in: Compendium in Astronomy, E. G. Mariolopoulos, P. S. Theocaris, and L. N. Mavridis, eds. Reidel. Dordrecht, 253 (1982).

    Google Scholar 

  12. I. Yu. Alekseev and A. V. Kozhevnikova, in: Space Physics [in Russian], P. E. Zakharova, E. D. Kuznetsov, A. B. Ostrovskii, et al., eds., Izd. UrGU, Ekaterinburg (2004), p. 277.

    Google Scholar 

  13. S. L. Baliunas, R. A. Donahue, W. H. Soon et al., Astrophys. J. 438, 269 (1995).

    Google Scholar 

  14. J. D. Dorren, M. Güdel, and E. F. Guinan, Astrophys. J. 448, 431 (1995).

    Google Scholar 

  15. S. Messina, E. F. Guinan, A. F. Lanza, and C. Ambruster, Astron. Astrophys. 347, 249 (1999).

    Google Scholar 

  16. S. S. Vogt, A. P. Hatzes, and A. A. Misch, Astrophys. J. Suppl. Ser. 121, 547 (1999).

    Google Scholar 

  17. M. A. Livshits, I. Yu. Alekseev, and M. M. Katsova, Astron. zh. 80, 613 (2003).

    Google Scholar 

  18. Zs. Kövári, K. G. Strassmeier, Th. Granzer et al., Astron. Astrophys. 417, 1047 (2004).

    Google Scholar 

  19. I. Yu. Alekseev and O. V. Kozlova, Astron. Astrophys. 396, 203 (2002).

    Google Scholar 

  20. I. Yu. Alekseev and O. V. Kozlova, Astronfizika 46, 41 (2003).

    Google Scholar 

  21. I. Yu. Alekseev and N. I. Bondar’, Astron. zh. 75, 750 (1998).

    Google Scholar 

  22. K. Oláh, K. G. Strassmeier, Zs. Kövári, and E. F. Guinan, Astron. Astrophys. 372, 119 (2001).

    Google Scholar 

  23. B. R. Pettersen, K. Oláh, and W. H. Sandmann, Astron. Astrophys. Suppl. Ser. 96, 497 (1992).

    Google Scholar 

  24. I. Yu. Alekseev, V. E. Chalenko, and D. N. Shakhovskoi, Astron. zh. 77, 777 (2000).

    Google Scholar 

  25. I. Yu. Alekseev, Astron. zh. 73, 81 (1996).

    Google Scholar 

  26. K. G. Strassmeier, B. Hubl, and J. B. Rice, Astron. Astrophys. 322, 511 (1997).

    Google Scholar 

  27. I. Yu. Alekseev and O. V. Kozlova, Astrofizika 44, 529 (2001).

    Google Scholar 

  28. I. Yu. Alekseev, Astron. zh. 80, 467 (2003).

    Google Scholar 

  29. E. A. Bruevich, M. M. Katsova, and D. D. Sokolov, Astron. zh. 78, 827 (2001).

    Google Scholar 

  30. D. S. Hall, in: The Sun and Cool Stars: Activity, Magnetism, Dynamos, I. Tuominen, D. Moss, and G. Rüdiger, eds., Springer-Verlag, Berlin (1991), p. 353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Astrofizika, Vol. 48, No. 1, pp. 29–43 (February 2005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, I.Y. Spots, activity cycles, and differential rotation on cool stars. Astrophysics 48, 20–31 (2005). https://doi.org/10.1007/s10511-005-0003-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-005-0003-x

Keywords

Navigation