Skip to main content
Log in

Gravitational anomaly detection using a satellite constellation: analysis and simulation

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We investigate the utility of a constellation of four satellites in heliocentric orbit, equipped with accurate means to measure intersatellite ranges, round-trip times and phases of signals coherently retransmitted between members of the constellation. Our goal is to reconstruct the measured trace of the gravitational gradient tensor as accurately as possible. Intersatellite ranges alone are not sufficient for its determination, as they do not account for any rotation of the satellite constellation, which introduces fictitious forces and accelerations. However, measuring signal round-trip time differences along clockwise and counterclockwise signal paths in a Sagnac-type measurement among the satellites supplies the necessary observables to estimate, and subtract, the effects of rotation. Utilizing, in addition, the approximate distance and direction from the Sun, it is possible to approach an accuracy of \(10^{-24}~{\mathrm{s}}^{-2}\) for a constellation with typical intersatellite distances of 1000 km in an orbit with a 1 astronomical unit semi-major axis. This is deemed sufficient to detect the presence of a galileonic modification of the solar gravitational field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability

The simulation code described in this manuscript is published at https://github.com/vttoth/TETRA.

Notes

  1. This form follows directly from the right-hand side of the alternate form of Einstein’s field equation in the Newtonian approximation, specifically the term \(T_{00}-\tfrac{1}{2}g_{00}T\) with \(T_{\mu \nu}=\operatorname {diag}(c^{2}\rho ,-p,-p,-p)\) for an isotropic perfect fluid.

  2. https://github.com/vttoth/TETRA

References

  • Curtright, T.L., Fairlie, D.B., Alshal, H.: A Galileon primer (2012). arXiv:1212.6972 [hep-th]

  • Kepler, J., Ptolemaeus, C., Fludd, R.: Harmonices Mvndi Libri (1619)

    Google Scholar 

  • Nicolis, A., Rattazzi, R., Trincherini, E.: Galileon as a local modification of gravity. Phys. Rev. D 79(6), 064036 (2009). https://doi.org/10.1103/PhysRevD.79.064036. arXiv:0811.2197 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  • Poisson, S.D.: Sur la théorie du magnétisme en mouvement. Mémoires l’académie des sciences VI, 441–570 (1823)

  • Raphson, J.: Analysis Aequationum Universalis, 2nd edn. Iohannem Taylor, London (1697)

    Google Scholar 

  • Rodrigues: Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de Mathématiques Pures et Appliquées, 380–440 (1840)

  • Sagnac, G.: L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. Comptes Rendus 157, 708–710 (1913a)

    Google Scholar 

  • Sagnac, G.: Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant. Comptes Rendus 157, 1410–1413 (1913b)

    Google Scholar 

  • Seidel, L.: Über die Berechnung der wahrscheinlichsten Werthe solcher Unbeckannten zwischen welchen Bedingungs-Gelichungen bestehen. Astron. Nachr. 84(13), 193 (1874). https://doi.org/10.1002/asna.18740841302

    Article  ADS  Google Scholar 

  • Yu, N., Chiow, S.-w., Gleyzes, J., Bull, P., Dore, O., Rhodes, J., Jewell, J., Huff, E., Muller, H.: Direct probe of dark energy interactions with a Solar System laboratory (2018). https://ntrs.nasa.gov/citations/20190002500

Download references

Acknowledgements

VTT thanks Slava Turyshev for discussions and acknowledges the generous support of David H. Silver, Plamen Vasilev and other Patreon patrons.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose. The authors consent to publication of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VTT wrote the entire manuscript and developed the software used for analysis.

Corresponding author

Correspondence to Viktor T. Toth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toth, V.T. Gravitational anomaly detection using a satellite constellation: analysis and simulation. Astrophys Space Sci 368, 92 (2023). https://doi.org/10.1007/s10509-023-04248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-023-04248-5

Keywords

Navigation