Skip to main content
Log in

Impact of geomagnetic storms on ionospheric TEC at high latitude stations: a comparative analysis of GPS observations and the IRI-2016 model

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This work investigates the effects of two intense geomagnetic storms on Total Electron Content (TEC) in the ionosphere at high latitude stations situated in different hemispheres. Using ground-based GNSS receivers and the IRI-2016 model, the study analyzes TEC data collected from Kerguelen station (55.78°S, 133.44°E) in the southern hemisphere and Sodankyla station (63.83°N, 118.27°E) in the northern hemisphere. Substantial TEC fluctuations were observed during both geomagnetic storms, with more pronounced variations recorded over the Sodankyla station. Interestingly, during these storm events, nighttime TEC closely reached the daytime TEC levels, implying the inflow of additional plasma from higher latitudes in to the region. Through a comparative analysis using change in TEC (dTEC), it was found that Kerguelen station, situated farther from the geomagnetic polar region, exhibited more significant TEC alterations compared to the closer, Sodankyla station. While the observational measurement exhibited a positive ionospheric effect to the intense storms at both stations, IRI-2016 model showed negative responses during the initial, main, and recovery phases. Despite the significant correlation between IRI-TEC and GPS-TEC, error percentage and Root Mean Square Deviation (RMSD) plots represented that the IRI model struggled to accurately capture TEC fluctuations across various storm phases. Furthermore, the study examined the relative contributions of storm-induced changes in ionospheric O and N2 using the global map of Oxygen to Nitrogen ratio (O/N2) obtained from Thermosphere/Ionosphere Plasmasphere (CTIP) model, revealing a higher impact over Kerguelen station in comparison to Sodankyla station. Overall, this work helps to advance our understanding of geomagnetic storms impact on ionospheric TEC at high latitudes and highlights the current limitations in modeling approaches for accurately predicting ionospheric behavior during such dynamic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The GPS-TEC and IRI-TEC data for this study obtained from UNAVCO (University of NAVSTAR Consortium) dual frequency GPS devices (http://www.unavco.org/data/gps-gnssdata/) and (https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016), and the solar wind parameter data came from OmniWeb (https://omniweb.gsfc.nasa.gov/).

Code Availability

Not applicable.

References

  • Astafyeva, E., Zakharenkova, I., Alken, P.: Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the swarm constellation. Earth Planets Space 68(1), 1–12 (2016)

    Google Scholar 

  • Atıcı, R.: Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey. Astrophys. Space Sci. 363(11), 231 (2018)

    ADS  Google Scholar 

  • Bagiya, M.S., Joshi, H., Iyer, K., et al.: Tec variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. In: Annales Geophysicae, Copernicus GmbH, pp. 1047–1057 (2009)

    Google Scholar 

  • Belehaki, A., Jakowski, N., Reinisch, B.W.: Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS-derived TEC values. Radio Sci. 38(6), 13–21 (2003)

    Google Scholar 

  • Bilitza, D.: International reference ionosphere 2000. Radio Sci. 36(2), 261–275 (2001)

    ADS  Google Scholar 

  • Bilitza, D., Reinisch, B.W., Radicella, S.M., et al.: Improvements of the international reference ionosphere model for the topside electron density profile. Radio Sci. 41(05), 1–8 (2006)

    Google Scholar 

  • Bilitza, D., McKinnell, L.A., Reinisch, B., et al.: The international reference ionosphere today and in the future. J. Geod. 85(12), 909–920 (2011)

    ADS  Google Scholar 

  • Bilitza, D., Altadill, D., Zhang, Y., et al.: The international reference ionosphere 2012–a model of international collaboration. J. Space Weather Space Clim. 4, A07 (2014)

    Google Scholar 

  • Blagoveshchensky, D., Sergeeva, M.: Impact of geomagnetic storm of September 7–8, 2017 on ionosphere and HF propagation: a multi-instrument study. Adv. Space Res. 63(1), 239–256 (2019)

    ADS  Google Scholar 

  • Calabia, A., Anoruo, C., Shah, M., et al.: Low-latitude ionospheric responses and coupling to the February 2014 multiphase geomagnetic storm from GNSS, magnetometers, and space weather data. Atmosphere 13(4), 518 (2022)

    ADS  Google Scholar 

  • Cander, L.R.: Ionospheric Space Weather. Springer, Berlin (2019)

    Google Scholar 

  • Chakraborty, M., Kumar, S., De, B.K., et al.: Effects of geomagnetic storm on low latitude ionospheric total electron content: a case study from Indian sector. J. Earth Syst. Sci. 124(5), 1115–1126 (2015)

    ADS  Google Scholar 

  • Chartier, A.T., Mitchell, C.N., Jackson, D.R.: A 12 year comparison of MIDAS and IRI 2007 ionospheric total electron content. Adv. Space Res. 49(9), 1348–1355 (2012)

    ADS  Google Scholar 

  • Cherniak, I., Krankowski, A., Zakharenkova, I.: Observation of the ionospheric irregularities over the northern hemisphere: methodology and service. Radio Sci. 49(8), 653–662 (2014)

    ADS  Google Scholar 

  • Coster, A., Komjathy, A.: Space weather and the global positioning system. Space Weather 6(6) (2008)

  • da Silva, R.P., Denardini, C.M., Marques, M.S., et al.: Ionospheric total electron content responses to HILDCAA intervals. Ann. Geophys. 38, 27–34 (2020)

    ADS  Google Scholar 

  • Danilov, A.: F2-region response to geomagnetic disturbances. J. Atmos. Sol.-Terr. Phys. 63(5), 441–449 (2001)

    ADS  Google Scholar 

  • Fang, T.W., Kubaryk, A., Goldstein, D., et al.: Space weather environment during the SpaceX Starlink satellite loss in February 2022. Space Weather 20(11), e2022SW003193 (2022)

    ADS  Google Scholar 

  • Fuller-Rowell, T., Codrescu, M., Moffett, R., et al.: Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 99(A3), 3893–3914 (1994)

    ADS  Google Scholar 

  • Gopi, K.: GPS-TEC Analysis Application. Institute for Scientific Research, Boston (2014). Available at http://seemala.blogspot.com

    Google Scholar 

  • Hu, A., Carter, B., Currie, J., et al.: Modeling of topside ionospheric vertical scale height based on ionospheric radio occultation measurements. J. Geophys. Res. Space Phys. 124(6), 4926–4942 (2019)

    ADS  Google Scholar 

  • Idosa, C.U., Rikitu, K.S.: Effects of total solar eclipse on ionospheric total electron content over Antarctica on 2021 December 4. Astrophys. J. 932(1), 2 (2022)

    ADS  Google Scholar 

  • Idosa, C., Shogile, K.: Variations of ionospheric TEC due to coronal mass ejections and geomagnetic storm over New Zealand. New Astron. 99, 101961 (2023)

    Google Scholar 

  • Inyurt, S., Yildirim, O., Mekik, C.: Comparison between IRI-2012 and GPS-TEC observations over the western Black Sea. In: Annales Geophysicae, Copernicus GmbH, pp. 817–824 (2017)

    Google Scholar 

  • Jenan, R., Dammalage, T.L., Panda, S.K.: Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region. Acta Astronaut. 180, 575–587 (2021)

    ADS  Google Scholar 

  • Jin, S., Park, J.U.: GPS ionospheric tomography: a comparison with the IRI-2001 model over South Korea. Earth Planets Space 59, 287–292 (2007)

    ADS  Google Scholar 

  • Karia, S., Patel, N., Pathak, K.: Comparison of GPS based TEC measurements with the IRI-2012 model for the period of low to moderate solar activity (2009–2012) at the crest of equatorial anomaly in Indian region. Adv. Space Res. 55(8), 1965–1975 (2015)

    ADS  Google Scholar 

  • Lai, P.C., Lin, C.S., Burke, W.J., et al.: Cosmic observations of dayside total electron content enhancements in response to moderate disturbances in the solar wind. J. Geophys. Res. Space Phys. 116(A5) (2011)

  • Lastovicka, J.: Monitoring and forecasting of ionospheric space weather—effects of geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 64(5–6), 697–705 (2002)

    ADS  Google Scholar 

  • Li, M., Yuan, Y., Zhang, B., et al.: Determination of the optimized single-layer ionospheric height for electron content measurements over China. J. Geod. 92, 169–183 (2018)

    ADS  Google Scholar 

  • Liu, J., Zhao, B., Liu, L.: Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances. In: Annales Geophysicae, Copernicus GmbH, pp. 795–805 (2010)

    Google Scholar 

  • Liu, L., Wan, W., Chen, Y., et al.: Solar activity effects of the ionosphere: a brief review. Chin. Sci. Bull. 56(12), 1202–1211 (2011)

    Google Scholar 

  • Liu, J., Chen, R., An, J., et al.: Spherical cap harmonic analysis of the arctic ionospheric TEC for one solar cycle. J. Geophys. Res. Space Phys. 119(1), 601–619 (2014)

    ADS  Google Scholar 

  • Luo, W., Liu, Z., Li, M.: A preliminary evaluation of the performance of multiple ionospheric models in low-and mid-latitude regions of China in 2010–2011. GPS Solut. 18(2), 297–308 (2014)

    Google Scholar 

  • Mansilla, G.A.: Behavior of the total electron content over the Arctic and Antarctic sectors during several intense geomagnetic storms. Geod. Geodyn. 10(1), 26–36 (2019)

    Google Scholar 

  • Mohamed, H.S., Amory-Mazaudier, C., Panda, S.K., et al.: Delayed response of low latitudes tec during thirty-six geomagnetic storms from 2014 to 2017. J. Atmos. Sol.-Terr. Phys. 250, 106109 (2023)

    Google Scholar 

  • Montenbruck, O., Hauschild, A., Steigenberger, P.: Differential code bias estimation using multi-gnss observations and global ionosphere maps. J. Inst. Navig. 61(3), 191–201 (2014)

    Google Scholar 

  • Müller-Wodarg, I., Mendillo, M., Yelle, R., et al.: A global circulation model of Saturn’s thermosphere. Icarus 180(1), 147–160 (2006)

    ADS  Google Scholar 

  • Nicolet, M., Aikin, A.: The formation of the d region of the ionosphere. J. Geophys. Res. 65(5), 1469–1483 (1960)

    ADS  Google Scholar 

  • Nilsson, H., Carlsson, E., Brain, D.A., et al.: Ion escape from Mars as a function of solar wind conditions: a statistical study. Icarus 206(1), 40–49 (2010)

    ADS  Google Scholar 

  • Okoh, D., Eze, A., Adedoja, O., et al.: A comparison of IRI-TEC predictions with GPS-TEC measurements over Nsukka, Nigeria. Space Weather 10(10) (2012)

  • Otsuka, Y., Ogawa, T., Saito, A., et al.: A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54(1), 63–70 (2002)

    ADS  Google Scholar 

  • Pham Thi Thu, H., Amory-Mazaudier, C., Le Huy, M.: Time variations of the ionosphere at the northern tropical crest of ionization at Phu Thuy, Vietnam. In: Annales Geophysicae, Copernicus GmbH, pp. 197–207 (2011)

    Google Scholar 

  • Prasad, S., Rao, P.R., Prasad, D., et al.: On the variabilities of the total electron content (TEC) over the Indian low latitude sector. Adv. Space Res. 49(5), 898–913 (2012)

    ADS  Google Scholar 

  • Rajana, S.S.K., Shrungeshwara, T., Vivek, C.G., et al.: Evaluation of long-term variability of ionospheric total electron content from IRI-2016 model over the Indian sub-continent with a latitudinal chain of dual-frequency geodetic GPS observations during 2002 to 2019. Adv. Space Res. 69(5), 2111–2125 (2022)

    ADS  Google Scholar 

  • Ramsingh, S.S., Sreekumar, S., et al.: Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: results from a chain of ground-based observations over Indian sector. J. Geophys. Res. Space Phys. 120(12), 10–864 (2015)

    Google Scholar 

  • Rao, S., Chakraborty, M., Kumar, S., et al.: Low-latitude ionospheric response from GPS, IRI and TIE-GCM TEC to solar cycle 24. Astrophys. Space Sci. 364, 1–14 (2019)

    Google Scholar 

  • Reddybattula, K.D., Panda, S.K.: Performance analysis of quiet and disturbed time ionospheric TEC responses from GPS-based observations, IGS-GIM, IRI-2016 and SPIM/IRI-Plas 2017 models over the low latitude Indian region. Adv. Space Res. 64(10), 2026–2045 (2019)

    ADS  Google Scholar 

  • Reddybattula, K.D., Panda, S.K., Ansari, K., et al.: Analysis of ionospheric TEC from GPS, GIM and global ionosphere models during moderate, strong, and extreme geomagnetic storms over Indian region. Acta Astronaut. 161, 283–292 (2019)

    ADS  Google Scholar 

  • Reddybattula, K.D., Panda, S.K., Sharma, S.K., et al.: Anomaly effects of 6–10 September 2017 solar flares on ionospheric total electron content over Saudi Arabian low latitudes. Acta Astronaut. 177, 332–340 (2020)

    ADS  Google Scholar 

  • Rishbeth, H., Mendillo, M.: Patterns of f2-layer variability. J. Atmos. Sol.-Terr. Phys. 63(15), 1661–1680 (2001)

    ADS  Google Scholar 

  • Saqib, M., Şentürk, E., Sahu, S.A., et al.: Ionospheric anomalies detection using autoregressive integrated moving average (arima) model as an earthquake precursor. Acta Geophys. 69(4), 1493–1507 (2021)

    ADS  Google Scholar 

  • Sharma, S., Galav, P., Dashora, N., et al.: Response of low-latitude ionospheric total electron content to the geomagnetic storm of 24 August 2005. J. Geophys. Res. Space Phys. 116(A5) (2011)

  • Sharma, S.K., Singh, A.K., Panda, S.K., et al.: The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: a focus on st. Patrick’s day storm. Astrophys. Space Sci. 365(2), 1–10 (2020)

    Google Scholar 

  • Shen, X.C., Hudson, M.K., Jaynes, A.N., et al.: Statistical study of the storm time radiation belt evolution during Van Allen Probes era: CME-versus CIR-driven storms. J. Geophys. Res. Space Phys. 122(8), 8327–8339 (2017)

    ADS  Google Scholar 

  • Simi, K., Manju, G., Haridas, M., et al.: Ionospheric response to a geomagnetic storm during November 8–10, 2004. Earth Planets Space 65(4), 343–350 (2013)

    ADS  Google Scholar 

  • Singh, A., Rathore, V.S., Kumar, S., et al.: Effect of intense geomagnetic storms on low-latitude TEC during the ascending phase of the solar cycle 24. J. Astrophys. Astron. 42(2), 99 (2021)

    ADS  Google Scholar 

  • Tariku, Y.A.: Mid latitude ionospheric TEC modeling and the IRI model validation during the recent high solar activity (2013–2015). Adv. Space Res. 63(12), 4025–4038 (2019)

    ADS  Google Scholar 

  • Tariq, M.A., Shah, M., Ulukavak, M., et al.: Comparison of TEC from GPS and IRI-2016 model over different regions of Pakistan during 2015–2017. Adv. Space Res. 64(3), 707–718 (2019)

    ADS  Google Scholar 

  • Tariq, M.A., Shah, M., Inyurt, S., et al.: Comparison of TEC from IRI-2016 and GPS during the low solar activity over Turkey. Astrophys. Space Sci. 365(11), 1–13 (2020)

    Google Scholar 

  • Themens, D.R., Jayachandran, P., Langley, R., et al.: Determining receiver biases in GPS-derived total electron content in the auroral oval and polar cap region using ionosonde measurements. GPS Solut. 17, 357–369 (2013)

    Google Scholar 

  • Thomas, E., Baker, J., Ruohoniemi, J., et al.: The geomagnetic storm time response of GPS total electron content in the North American sector. J. Geophys. Res. Space Phys. 121(2), 1744–1759 (2016)

    ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L., et al.: Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. Space Phys. 111(A7) (2006)

Download references

Acknowledgements

The authors acknowledge all data providers UNAVCO (University NAVSTAR Consortium) (http://www.unavco.org/data/gps-gnssdata/) for GPS-TEC data, Omni website (https://omniweb.gsfc.nasa.gov/) for Solar wind data (IMF Bz and IEF Ey) and Kp, Ap, and Dst-indices, and finally the IRI-TEC data website (https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016). We also acknowledge the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP) model for providing the ratio of oxygen to nitrogen molecules plot from (https://ccmc.gsfc.nasa.gov/models/ctip.php#description). The authors of cited journals and books are also acknowledged.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Author 1: Conceptualization, Data curation, Doing different plots used in the manuscript, Writting the original draft. Author 2: Doing different plots used in the manuscript, Writting and editing the manuscript, Reviewing, giving constructive comments. Author 3: Reviewing, giving constructive comments.

Corresponding author

Correspondence to Chali Idosa Uga.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idosa Uga, C., Prasad Gautam, S. & Beshir Seba, E. Impact of geomagnetic storms on ionospheric TEC at high latitude stations: a comparative analysis of GPS observations and the IRI-2016 model. Astrophys Space Sci 368, 85 (2023). https://doi.org/10.1007/s10509-023-04241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-023-04241-y

Keywords

Navigation