Skip to main content
Log in

Compact stars in \(\kappa (R,T)\) gravity

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The study is conducted for investigation of a new solution for stellar objects in \(\kappa (R,T)\) theory. We investigate whether Krori–Barua model produces valid results in \(\kappa (R,T)\) theory. We attain field equations through Krori–Barua metric form related with geometry of inner space. From field equations, we obtain all unknown matter components \(\kappa (T)=8\pi G-\lambda T\) in the theory. Constructed model is considered with some class of compact stars such as \(4U 1820-30\), \(\mathit{SAX} J1808.4-3658\), and \(\mathit{Her} X-1\). To prove physical stability of the constructed model, we investigate both normal and effective matter form behaviors by way of some physical conditions. It is found that all conditions are valid for effective matter. Therefore, this study reveals consistency of both the compact star model and the gravitation theory. But a remarkable point is that normal matter has to face some problems in the \(\kappa (R,T)\) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abbas, G., Shahzad, M.: Comparative analysis of Einstein gravity and Rastall gravity for the compact objects. Chin. J. Phys. 63, 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  • Abbas, G., Nazeer, S., Meraj, M.: Cylindrically symmetric models of anisotropic compact stars. Astrophys. Space Sci. 354, 449–455 (2014)

    Article  ADS  Google Scholar 

  • Adler, R.J.: A fluid sphere in general relativity. J. Math. Phys. 15(6), 727–729 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  • Ahmed, N., Pradhan, A.: Probing cosmic acceleration in \(\kappa (R, T)\) gravity. Indian J. Phys. 96(1), 301–307 (2022)

    Article  ADS  Google Scholar 

  • Andréasson, H.: Sharp bounds on the critical stability radius for relativistic charged spheres. Commun. Math. Phys. 288(2), 715–730 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Aydın, H., Dog̃ru, M.U.: Cylindrically symmetric unimodular \(f (R)\) black holes. Int. J. Geom. Methods Mod. Phys. 18(07), 2150101 (2021)

    Article  MathSciNet  Google Scholar 

  • Bhar, P.: Strange quintessence star in Krori–Barua spacetime. Astrophys. Space Sci. 356(2), 365–373 (2015)

    Article  ADS  Google Scholar 

  • Bhar, P.: Strange star with Krori–Barua potential in the presence of anisotropy. Int. J. Geom. Methods Mod. Phys. 18(07), 2150097 (2021)

    Article  MathSciNet  Google Scholar 

  • Bhar, P., Govender, M., Sharma, R.: A comparative study between EGB gravity and GTR by modeling compact stars. Eur. Phys. J. C 77, 1–8 (2017)

    Article  Google Scholar 

  • Biswas, S., Ghosh, S., Ray, S., et al.: Strange stars in Krori–Barua spacetime under \(f (R, T)\) gravity. Ann. Phys. 401, 1–20 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bowers, R.L., Liang, E.: Anisotropic spheres in general relativity. Astrophys. J. 188, 657 (1974).

    Article  ADS  Google Scholar 

  • Chaisi, M., Maharaj, S.: Compact anisotropic spheres with prescribed energy density. Gen. Relativ. Gravit. 37, 1177–1189 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Delgaty, M., Lake, K.: Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun. 115(2–3), 395–415 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Doğru, M.U., Demirtaş, M.: Black holes with anisotropic fluid in Lyra scalar-tensor theory. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1), 38–44 (2018)

    Article  Google Scholar 

  • Gudekli, E., Kamran, M.J., Zubair, M., et al.: Study of anisotropic strange stars in Krori–Barua metric under \(f (T,T)\) gravity. Chin. J. Phys. 77, 592–604 (2022)

    Article  MathSciNet  Google Scholar 

  • Herrera, L.: Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  • Hillebrandt, W., Steinmetz, K.: Anisotropic neutron star models-stability against radial and nonradial pulsations. Astron. Astrophys. 53, 283–287 (1976)

    ADS  Google Scholar 

  • Hossein, S.M., Rahaman, F., Naskar, J., et al.: Anisotropic compact stars with variable cosmological constant. Int. J. Mod. Phys. D 21(13), 1250088 (2012)

    Article  ADS  MATH  Google Scholar 

  • Kalam, M., Rahaman, F., Monowar Hossein, S., et al.: Central density dependent anisotropic compact stars. Eur. Phys. J. C 73, 1–6 (2013)

    Article  Google Scholar 

  • Krori, K., Barua, J.: A singularity-free solution for a charged fluid sphere in general relativity. J. Phys. A, Math. Gen. 8(4), 508 (1975)

    Article  ADS  MATH  Google Scholar 

  • Lattimer, J.M., Steiner, A.W.: Neutron star masses and radii from quiescent low-mass X-ray binaries. Astrophys. J. 784(2), 123 (2014)

    Article  ADS  Google Scholar 

  • Leahy, D.A., Morsink, S.M., Cadeau, C.: Limits on mass and radius for the millisecond-period X-ray pulsar SAX J1808.4-3658. Astrophys. J. 672(2), 1119 (2008)

    Article  ADS  Google Scholar 

  • Li, X.D., Bombaci, I., Dey, M., et al.: Is SAX J1808.4-3658 a strange star? Phys. Rev. Lett. 83(19), 3776 (1999)

    Article  ADS  Google Scholar 

  • Maartens, R., Maharaj, M.: Conformally symmetric static fluid spheres. J. Math. Phys. 31(1), 151–155 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mak, M., Harko, T.: An exact anisotropic quark star model. Chin. J. Astron. Astrophys. 2(3), 248 (2002)

    Article  ADS  Google Scholar 

  • Mak, M., Harko, T.: Can the galactic rotation curves be explained in brane world models? Phys. Rev. D 70(2), 024010 (2004)

    Article  ADS  Google Scholar 

  • Malik, A.: Analysis of charged compact stars in modified \(f (R, \phi )\) theory of gravity. New Astron. 93, 101765 (2022)

    Article  Google Scholar 

  • Martin, D., Visser, M.: Algorithmic construction of static perfect fluid spheres. Phys. Rev. D 69(10), 104028 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rahaman, F., Ray, S., Jafry, A.K., et al.: Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state. Phys. Rev. D 82(10), 104055 (2010)

    Article  ADS  Google Scholar 

  • Ruderman, M.: Pulsars: structure and dynamics. Annu. Rev. Astron. Astrophys. 10(1), 427–476 (1972)

    Article  ADS  Google Scholar 

  • Sarkar, S., Sarkar, N., Rahaman, F., et al.: Wormholes in \(\kappa (R, T)\) gravity. arXiv preprint (2022). arXiv:2207.12403

  • Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie. Berlin Sitzungsberichte 18 (1916)

  • Schwarzschild, K.: On the gravitational field of a sphere of incompressible fluid according to Einstein’s theory. arXiv preprint (1999). arXiv:physics/9912033

  • Shamir, M.F., Ahmad, M.: Emerging anisotropic compact stars in \(f (\mathcal{G}, T)\) gravity. Eur. Phys. J. C 77, 1–12 (2017)

    Article  ADS  Google Scholar 

  • Singh, K.N., Pant, N., Govender, M.: Physical viability of fluid spheres satisfying the Karmarkar condition. Eur. Phys. J. C 77, 1–11 (2017)

    Article  Google Scholar 

  • Teruel, G.R.P.: \(\kappa (R, T)\) gravity. Eur. Phys. J. C 78(8), 660 (2018)

    Article  ADS  Google Scholar 

  • Teruel, G., Singh, K.N., Rahaman, F., et al.: Possible existence of stable compact stars in \(\kappa (\mathcal{R}, \mathcal{T})\) gravity. Int. J. Mod. Phys. A 37, 2250194 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Tolman, R.C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55(4), 364 (1939)

    Article  ADS  MATH  Google Scholar 

  • Ulu Dog̃ru, M., Varlıklı, N., Baykal, D., et al.: Energy and momentum of higher dimensional black holes. Int. J. Theor. Phys. 51, 1545–1554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Varela, V., Rahaman, F., Ray, S., et al.: Charged anisotropic matter with linear or nonlinear equation of state. Phys. Rev. D 82(4), 044052 (2010)

    Article  ADS  Google Scholar 

  • Zubair, M., Abbas, G., Noureen, I.: Possible formation of compact stars in \(f(R,T)\) gravity. Astrophys. Space Sci. 361(1), 8 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript half and half. Doğukan Taşer obtained field equation and solutions. Applications of solutions to 4U1820 - 30, SAXJ1808.4 - 3658 and HerX - 1 star studied by Serkan Sertaç Doğru. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dog̃ukan Taṣer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taṣer, D., Dog̃ru, S.S. Compact stars in \(\kappa (R,T)\) gravity. Astrophys Space Sci 368, 49 (2023). https://doi.org/10.1007/s10509-023-04203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-023-04203-4

Keywords

Navigation