Skip to main content
Log in

Hemispheric effects on ionospheric responses in the African sector

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We studied the responses of the ionosphere over the southern and northern African sector. A RINEX formatted TEC data obtained from the global positioning system (GPS) was used to study the impact of geomagnetic storms of 23rd June and 20th December on a South African station, SUTM (33.97°N, 6.84°W) and a Moroccan station, RABT (32.41°S, 38.75°E). The storms which occurred in summer and winter (solstice months) were quantified using the Dst data from World Data Center, Kyoto, Japan. The results showed obvious hemispheric and seasonal influences on ionospheric responses to the geomagnetic storms. The substorm-time responses of the ionosphere were always positive across the stations and seasons. This is a result of increased particle and energy depositions occasioned by the proton density (PD). The rates of energy and particles intensifications during substorms were higher in the summer storm event than in winter for both stations. In other words, there was no hemispheric asymmetry observed. In addition to the storm onset time, its peak time and hemispheric location are crucial in storm-time ionospheric responses. Local timing of the orientations of the prompt penetration and disturbance dynamo electric fields during northward interplanetary magnetic fields determined the nature of ionospheric responses in the day and night sides. These results contribute to our understanding of the dynamics and complexities of the ionosphere over African mid latitude ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used were freely obtained as follows:

(1) The Dst index data was sourced from the World Data Center, Kyoto, Japan, http://wdc.kugi.kyoto-u.ac.jp/dst_provisional/index.html.

(2) While the RINEX formatted TEC data was obtained from ftp://cddis.gsfc.nasa.gov/pub/gps/products/TEC.

(3) The solar wind plasma speed Vsw, plasma pressure, the IMF \(\mathrm{B}_{\mathrm{z}}\), and proton density were provided by the ACE satellite https://omniweb.gsfc.nasa.gov/.

Code Availability

Nil

References

  • Abdu, M.A., Batista, I.S., Bertoni, F., Reinisch, B.W., Kherani, E.A., Sobral, J.H.A.: Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil. J. Geophys. Res. 117, A05321 (2012). https://doi.org/10.1029/2011JA017174

    Article  ADS  Google Scholar 

  • Astafyeva, E., Bagiya, M.S., Förster, M., Nishitani, N.: Unprecedented hemispheric asymmetries during a surprise ionospheric storm: a game of drivers. J. Geophys. Res. Space Phys. 125(3), e2019JA027261 (2020)

    Article  ADS  Google Scholar 

  • Astafyeva, E., Zakharenkova, I., Alken, P.: Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 68(1), 1–12 (2016). https://doi.org/10.1186/s40623-016-0526-x

    Article  Google Scholar 

  • Astafyeva, E., Zakharenkova, I., Hozumi, K., Alken, P., Coïsson, P., Hairston, M.R., Coley, W.R.: Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22–23 June 2015 geomagnetic storm using ground-based and space borne techniques. J. Geophys. Res. Space Phys. 123 (2018). https://doi.org/10.1002/2017JA024981

  • Bagiya, M.S., Hazarika, R., Laskar, F.I., Sunda, S., Gurubaran, S., Chakrabarty, D., et al.: Effects of prolonged southward interplanetary magnetic field on low-latitude ionospheric electron density. J. Geophys. Res. Space Phys. 119(7), 5764–5776 (2014)

    Article  ADS  Google Scholar 

  • Balan, N., Rao, P.B.: Dependence of ionospheric response on the local time of sudden commencement and the intensity of geomagnetic storms. J. Atmos. Terr. Phys. 52(4), 269–275 (1990)

    Article  ADS  Google Scholar 

  • Burešová, D., Laštovička, J.: Differences in midlatitude ionospheric response to magnetic disturbances at Northern and Southern Hemispheres and anomalous response during the last extreme solar minimum. Ionospheric Space Weather: Longitude and Hemispheric Dependences and Lower Atmosphere Forcing, 41–58 (2016)

  • Burns, A.G., Solomon, S.C., Qian, L., Wang, W., Emery, B.A., Wiltberger, M., Weimer, D.R.: The effects of corotating interaction region/high speed stream storms on the thermosphere and ionosphere during the last solar minimum. J. Atmos. Sol.-Terr. Phys. 83, 79–87 (2012). https://doi.org/10.1016/j.jastp.2012.02.006

    Article  ADS  Google Scholar 

  • Chen, Y., Liu, L., Le, H., Wan, W., Zhang, H.: Dusk-to-nighttime enhancement of mid-latitude NmF2 in local summer: inter-hemispheric asymmetry and solar activity dependence. Ann. Geophys. 33(6), 711–718 (2015)

    Article  ADS  Google Scholar 

  • De Abreu, A.J., Fagundes, P.R., Sahai, Y., de Jesus, R., Bittencourt, J.A., Brunini, C., et al.: Hemispheric asymmetries in the ionospheric response observed in the American sector during an intense geomagnetic storm. J. Geophys. Res. Space Phys. 115(A12) (2010)

  • Devi, M., Patgiri, S., Barbara, A.K., Gordiyenko, G., Depueva, A., Depuev, V., Ruzhin, Yu.Ya.: Storm time ionospheric-tropospheric dynamics: a study through ionospheric and lower atmospheric variability features of high/mid and low latitudes. Geomagn. Aeron. 2018(58), 857–870 (2018). https://doi.org/10.1134/S001679321807006X. 7

    Article  ADS  Google Scholar 

  • Ding, F., Wan, W., Liu, L., Afraimovich, E.L., Voeykov, S.V., Perevalova, N.P.: A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J. Geophys. Res. Space Phys. 113(A3) (2008)

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ −250) during solar cycle 23. Geophys. Res. Lett. 35, L06S03 (2008). https://doi.org/10.1029/2007GL031755

    Article  Google Scholar 

  • Ercha, A., Ridley, A., Zhang, D., Xiao, Z.: Analyzing the hemispheric asymmetry in the thermospheric density response to geomagnetic storms. J. Geophys. Res. 117, A08317 (2012). https://doi.org/10.1029/2011JA017259

    Article  ADS  Google Scholar 

  • Fuller-Rowell, T.J., Rees, D., Quegan, S., Moffett, R.J., Codrescu, M.V., Millward, G.H.: A coupled thermosphere-ionosphere model (CTIM) STEP Report ed R. W. Schunk (Boulder, Colorado: Scientific Committee on Solar Terrestrial Physics (SCOSTEP), NOAA/NGDC) 217 (1996)

  • Fuller-Rowell, T.J.: Storm-Time Response of the Thermosphere–Ionosphere System. Aeronomy of the Earth’s Atmosphere and Ionosphere, 419–435 (2011). https://doi.org/10.1007/978-94-007-0326-1_32

  • Greer, K.R., Immel, T., Ridley, A.: On the variation in the ionospheric response to geomagnetic storms with time of onset. J. Geophys. Res. Space Phys. 122(4), 4512–4525 (2017)

    Article  ADS  Google Scholar 

  • Guo, J., Feng, X., Zuo, P., Zhang, J., Wei, Y., Zong, Q.: Interplanetary drivers of ionospheric prompt penetration electric fields. J. Atmos. Sol.-Terr. Phys. 73(1), 130–136 (2011). https://doi.org/10.1016/j.jastp.2010.01.010

    Article  ADS  Google Scholar 

  • Heelis, R.A.: Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66(10), 825–838 (2004). https://doi.org/10.1016/j.jastp.2004.01.034

    Article  ADS  Google Scholar 

  • Hong, Y., Deng, Y., Zhu, Q., Maute, A., Sheng, C., Welling, D., Lopez, R.: Impacts of different causes on the inter-hemispheric asymmetry of ionosphere-thermosphere system at mid-and high-latitudes: GITM simulations. Space Weather 19(11), e2021SW002856 (2021)

    Article  ADS  Google Scholar 

  • Huang, C.S.: Statistical analysis of dayside equatorial ionospheric electric fields and electrojet currents produced by magnetospheric substorms during sawtooth events. J. Geophys. Res. Space Phys. 117(A2) (2012). https://doi.org/10.1029/2011JA017398

  • Huang, C.S., Sazykin, S., Chau, J.L., Maruyama, N., Kelley, M.C.: Penetration electric fields: efficiency and characteristic time scale. J. Atmos. Sol.-Terr. Phys. 69(10–11), 1135–1146 (2007). https://doi.org/10.1016/j.jastp.2006.08.016

    Article  ADS  Google Scholar 

  • Immel, T.J., Mannucci, A.J.: Ionospheric redistribution during geomagnetic storms. J. Geophys. Res. Space Phys. 118(12), 7928–7939 (2013)

    Article  ADS  Google Scholar 

  • Jin, S., Jin, R., Kutoglu, H.: Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations. J. Geod. 91(6), 613–626 (2017)

    Article  ADS  Google Scholar 

  • Kikuchi, T., Hashimoto, K.K.: Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit. Geosci. Lett. 3(1) (2016). https://doi.org/10.1186/s40562-016-0035-6

  • Klobuchar, J.A., Anderson, D.N., Doherty, P.H.: Model studies of the latitudinal extent of the equatorial anomaly during equinoctial conditions. Radio Sci. 26(4), 1025–1047 (1991)

    Article  ADS  Google Scholar 

  • Liu, L., Chen, Y., Le, H., Kurkin, V.I., Polekh, N.M., Lee, C.-C.: The ionosphere under extremely prolonged low solar activity. J. Geophys. Res. Space Phys. 116(A4), A04320 (2011). https://doi.org/10.1029/2010ja016296

    Article  ADS  Google Scholar 

  • Liu, L., Wan, W., Yue, X., Zhao, B., Ning, B., Zhang, M.L.: The dependence of plasma density in the topside ionosphere on the solar activity level. Ann. Geophys. 25(6), 1337–1343 (2007)

    Article  ADS  Google Scholar 

  • Liu, L., Zhao, B., Wan, W., Ning, B., Zhang, M.L., He, M.: Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements. J. Geophys. Res. Space Phys. 114(A2) (2009)

  • Lu, G., Goncharenko, L.P., Richmond, A.D., Roble, R.G., Aponte, N.: A dayside ionospheric positive storm phase driven by neutral winds. J. Geophys. Res. Space Phys. 113(A8) (2008)

  • Ma, R., Xu, J., Wang, W., Yuan, W.: Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices. J. Geophys. Res. Space Phys. 114(A10) (2009)

  • Mansilla, G.A.: Ionospheric response to the magnetic storm of 22. Pure Appl. Geophys. 175(3), 1139–1153 (2018). 2015

    Article  ADS  Google Scholar 

  • Maruyama, N., Richmond, A.D., Fuller-Rowell, T.J., Codrescu, M.V., Sazykin, S., Toffoletto, F.R., et al.: Interactions between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 32(17), L17105 (2005). https://doi.org/10.1029/2005GL023763

    Article  ADS  Google Scholar 

  • Maruyama, N., Sun, Y.Y., Richards, P.G., Middlecoff, J., Fang, T.W., Fuller-Rowell, T.J., et al.: A new source of the midlatitude ionospheric peak density structure revealed by a new ionosphere-plasmasphere model. Geophys. Res. Lett. 43(6), 2429–2435 (2016)

    Article  ADS  Google Scholar 

  • Matamba, T.M., Habarulema, J.B., McKinnell, L.A.: Statistical analysis of the ionospheric response during geomagnetic storm conditions over South Africa using ionosonde and GPS data. Space Weather 13(9), 536–547 (2015)

    Article  ADS  Google Scholar 

  • Matamba, T.M., Habarulema, J.B., Burešová, D.: Midlatitude ionospheric changes to four great geomagnetic storms of solar cycle 23 in southern and northern hemispheres. Space Weather 14(12), 1155–1171 (2016)

    Article  ADS  Google Scholar 

  • McPherron, R.L., Russell, C.T., Aubry, M.P.: Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res. 78(16), 3131–3149 (1973)

    Article  ADS  Google Scholar 

  • Mendillo, M.: Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 44(4) (2006)

  • Miyashita, Y., Kamide, Y., Liou, K., Wu, C.C., Ieda, A., Nishitani N., ., Mukai, T.: Successive substorm expansions during a period of prolonged northward interplanetary magnetic field. J. Geophys. Res. Space Phys. 116(A9) (2011)

  • Chakraborty, M., Kumar, S., De, B.K., Guha, A.: Effects of geomagnetic storm on low latitude ionospheric total electron content: a case study from Indian sector. J. Earth Syst. Sci. (2015). https://doi.org/10.1007/s12040-015-0588-3

    Article  Google Scholar 

  • Nayak, C., Tsai, L.C., Su, S.Y., Galkin, I.A., Tan, A.T.K., Nofri, E., Jamjareegulgarn, P.: Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick’s Day geomagnetic storm of 17. J. Geophys. Res. Space Phys. 121(8), 7941–7960 (2016). 2015

    Article  ADS  Google Scholar 

  • Ogwala, A., Somoye, E.O., Panda, S.K., Ogunmodimu, O., Onori, E., Sharma, S.K., Okoh, D., Oyedokun, O.: Total electron content at equatorial and low-, middle-and high-latitudes in African longitude sector and its comparison with IRI-2016 and IRI-PLAS 2017 models. Adv. Space Res. 68(5), 2160–2176 (2021)

    Article  ADS  Google Scholar 

  • Oyedokun, O.J., Akala, A.O., Oyeyemi, E.O.: Characterization of African equatorial ionization anomaly during the maximum phase of Solar Cycle 24. J. Geophys. Res. Space Phys. 125(9) (2020)

  • Oyedokun, O.J., Amaechi, P.O., Akala, A.O., Simi, K.G., Ogwala, A., Oyeyemi, E.O.: Solar and interplanetary events that drove two CIR-related geomagnetic storms of 1 June 2013 and 7 October 2015, and their ionospheric responses at the American and African equatorial ionization anomaly regions. Adv. Space Res. 69(5), 2168–2181 (2022)

    Article  ADS  Google Scholar 

  • Peng, Z., Wang, C., Yang, Y.F., Li, H., Hu, Y.Q., Du, J.: Substorms under northward interplanetary magnetic field: statistical study. J. Geophys. Res. Space Phys. 118(1), 364–374 (2013)

    Article  ADS  Google Scholar 

  • Prölss, G.W.: Ionospheric F region storms. In: Volland, H. (ed.) Handbook of Atmospheric Electrodynamics. CRC Press, Boca Raton (1995)

    Google Scholar 

  • Resende, L.C., Shi, J.K., Denardini, C.M., Batista, I.S., Nogueira, P.A.B., Arras C., ., Liu, Z.: The Influence of Disturbance Dynamo Electric Field in the Formation of Strong Sporadic \(E\) Layers over Boa Vista, a low-Latitude Station in the American Sector. J. Geophys. Res. Space Phys. 125(7) (2020)

  • Sandhu, J.K., Rae, I.J., Freeman, M.P., Forsyth, C., Gkioulidou, M., Reeves, G.D., Spence, H.E., Jackman, C.M., Lam, M.M.: Energization of the ring current by substorms. J. Geophys. Res. Space Phys. 123(10), 8131–8148 (2018). https://doi.org/10.1029/2018JA025766

    Article  ADS  Google Scholar 

  • Sastri, J.H., Abdu, M.A., Sobral, J.H.A.: Response of equatorial ionosphere to episodes of asymmetric ring current activity. Ann. Geophys. 15(10), 1316–1323 (1997)

    Article  ADS  Google Scholar 

  • Sastri, J.H., Rao, J.V.S.V., Rao, D.R.K., Pathan, B.M.: Daytime equatorial geomagnetic H field response to the growth phase and expansion phase onset of isolated substorms: case studies and their implications. J. Geophys. Res. Space Phys. 106(A12), 29925–29933 (2001)

    Article  ADS  Google Scholar 

  • Seemala, G.K., Valladares, C.E.: Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 46(5), 1–14 (2011). https://doi.org/10.1029/2011rs004722

    Article  Google Scholar 

  • Stepanov, N.A., Sergeev, V.A., Shukhtina, M.A., Ogawa, Y., Chu, X., Rogov, D.D.: Ionospheric electron density and conductance changes in the auroral zone during substorms. J. Geophys. Res. Space Phys. 126(7), e2021JA029572 (2021)

    Article  ADS  Google Scholar 

  • Sur, D., Ray, S., Paul, A.: High and mid latitude and near subsolar point ionospheric and thermospheric responses to the solar flares and geomagnetic storms during low solar activity periods of 2017 and 2020. Adv. Space Res. (2022)

  • Thomas, E.G., Baker, J.B.H., Ruohoniemi, J.M., Coster, A.J., Zhang, S.R.: The geomagnetic storm time response of GPS total electron content in the North American sector. J. Geophys. Res. Space Phys. 121(2), 1744–1759 (2016)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Saito, A., Araki, T., Yumoto K., ., Vasyliūnas, V.M.: Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31. J. Geophys. Res. Space Phys. 113(A5) (2008). 2003

  • Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M.A., Sobral, J.H.A., Gonzalez W., ., Vasyliunas, V.M.: Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. Space Phys. 109(A8) (2004)

  • Wan, X., Xiong, C., Gao, S., Huang, F., Liu, Y., Aa, E., Yin, F., Cai, H.: The nighttime ionospheric response and occurrence of equatorial plasma irregularities during geomagnetic storms: a case study. Satellite Navigation 2(1), 1–14 (2021). https://doi.org/10.1186/s43020-021-00055-x

    Article  Google Scholar 

  • Wang, W., Lei, J., Burns, A.G., Solomon, S.C., Wiltberger, M., Xu J., ., Coster, A.: Ionospheric response to the initial phase of geomagnetic storms: Common features. J. Geophys. Res. Space Phys. 115(A7) (2010)

  • Wang, Z., Zou, S., Liu, L., Ren, J., Aa, E.: Hemispheric asymmetries in the mid-latitude ionosphere during the September 7–8, 2017 storm: multi-instrument observations. J. Geophys. Res. Space Phys. 126(4), e2020JA028829 (2021)

    Article  ADS  Google Scholar 

  • Yeh, H.C., Foster, J.C., Rich, F.J., Swider, W.: Storm time electric field penetration observed at mid-latitude. J. Geophys. Res. Space Phys. 96(A4), 5707–5721 (1991)

    Article  ADS  Google Scholar 

  • Yue, X., Wang, W., Lei, J., Burns, A., Zhang, Y., Wan, W., et al.: Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J. Geophys. Res. Space Phys. 121(9), 9234–9249 (2016)

    Article  ADS  Google Scholar 

  • Zhao, B., Wan, W., Liu, L.: Responses of equatorial anomaly to the October-November 2003 superstorms. Ann. Geophys. 23(3), 693–706 (2005)

    Article  ADS  Google Scholar 

  • Zhao, B., Wan, W., Tschu, K., Igarashi, K., Kikuchi, T., Nozaki, K., Watari, S., Li, G., Paxton, L.J., Liu, L., Ning, B., Liu, J.-Y., Su, S.-Y., Bulanon, P.H.: Ionospheric disturbances observed throughout southeast Asia of superstorm of 20–22 November 2003. J. Geophys. Res. 113, A00A04 (2008). https://doi.org/10.1029/2008JA013054

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

Obiegbuna designed the research Enwelum reviewed literature Ugwu sourced data Orji and Obiegbuna analyzed and discussed the results.

Corresponding author

Correspondence to Orji Prince Orji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obiegbuna, D.C., Enwelum, C.U., Ugwu, J.C. et al. Hemispheric effects on ionospheric responses in the African sector. Astrophys Space Sci 368, 39 (2023). https://doi.org/10.1007/s10509-023-04194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-023-04194-2

Keywords

Navigation