Skip to main content
Log in

Enhanced \(m = 1\) WKB instabilities in nearly Keplerian stellar discs due to the presence of gas

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Dynamical evolution of galaxies is a complex process, especially the centers. Gravitationally coupled gas and stellar discs have been observed to coexist in the galactic discs, including at the center of galaxies. The present work, provide a simple analytic model of nearly Keplerian modes, for co-rotating gravitationally coupled gaseous and stellar discs. We restrict our analysis to ‘slow modes’; their eigenfrequencies being much smaller than the Keplerian orbital frequency to the disc. The dispersion relation using the Wentzel-Kramers-Brillouin (WKB) approximation is formulated and the stability of modes is explored. The presence of gas is found to enhance the instability and slow modes exists only for azimuthal wavenumber, \(m=1\) for the continuum disc. We also analyze the nature of discrete eigen-spectra by quantizing the modes using the Bohr-Sommerfeld quantization condition. The Presence of gas supports the formation of modes with higher temporal frequency and larger wavelength, making them large scale and long-lived. We find that discrete spectra is absent if the ratio of gas mass to stellar mass in galactic disc is greater than 0.1. Though simplified our analysis gives a physically relevant framework for the formation and existence of eccentric disc at the center of galaxies without invoking any external factor. It hence paves a way to explaining the observed asymmetries at the centers of galaxies without provoking the need of continuous source of generation of perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The present manuscript has no associated data.

References

  • Alig, C.: Origin of the stellar discs at the galactic centre of the milky way. PhD thesis, lmu (2013)

  • Binney, J., Tremaine, S.: Galactic Dynamics. Princeton Series in Astrophysics (2008)

    Book  Google Scholar 

  • Binney, J., Michael, M., Merrifield, M.: Galactic Astronomy. Princeton University Press, Princeton (1998)

    Google Scholar 

  • Bournaud, F.: Bulge growth through disc instabilities in high-redshift galaxies. Galactic Bulges 418, 355–390 (2016)

    Article  ADS  Google Scholar 

  • Bournaud, F., Chapon, D., Teyssier, R., et al.: Hydrodynamics of high-redshift galaxy collisions: from gas-rich disks to dispersion-dominated mergers and compact spheroids. Astrophys. J. 730, 1–13 (2011)

    Article  Google Scholar 

  • Dobbs, C., Baba, J.: Dawes review 4: spiral structures in disc galaxies. Publ. Astron. Soc. Aust. 31, 1–40 (2014)

    Article  Google Scholar 

  • Elyasi, M., Nejad-Asghar, M.: The instability of viscous self-gravitating protostellar disk affected by density bump. Astrophys. Space Sci. 362, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  • Erickson, S.A.: Vibrations and instabilities of a disk galaxy with modified gravity. PhD thesis, Massachusetts Institute of Technology (1974)

  • Fensch, J., Bournaud, F.: The role of gas fraction and feedback in the stability and evolution of galactic discs: implications for cosmological galaxy formation models. Mon. Not. R. Astron. Soc. 505, 3579–3589 (2021)

    Article  ADS  Google Scholar 

  • Genzel, R., Eisenhauer, F., Gillessen, S.: The galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121 (2010)

    Article  ADS  Google Scholar 

  • Gholipour, M., Nejad-Asghar, M.: Viscothermal instability in Keplerian disc and formation of overdense regions. Astrophys. Space Sci. 343, 65–68 (2013)

    Article  ADS  Google Scholar 

  • Gulati, M., Saini, T.D.: Modal analysis of gravitational instabilities in nearly Keplerian, counter-rotating collisionless discs. Mon. Not. R. Astron. Soc. 465, 2505–2516 (2016)

    Article  ADS  Google Scholar 

  • Gulati, M., Saini, T.D., Sridhar, S.: Unstable m = 1 modes of counter-rotating Keplerian discs. Mon. Not. R. Astron. Soc. 424, 348–360 (2012)

    Article  ADS  Google Scholar 

  • Jalali, M.A.: Global drag-induced instabilities in protoplanetary disks. Astrophys. J. 772, 1–11 (2013)

    Article  Google Scholar 

  • Jalali, M.A., Tremaine, S.: Density waves in debris discs and galactic nuclei. Mon. Not. R. Astron. Soc. 421, 2368–2383 (2012)

    Article  ADS  Google Scholar 

  • Jog, C.J.: Swing amplification of nonaxisymmetric perturbations in stars and gas in a sheared galactic disk. Astrophys. J. 390, 378–386 (1992)

    Article  ADS  Google Scholar 

  • Jog, C.J.: Local stability criterion for stars and gas in a galactic disc. Mon. Not. R. Astron. Soc. 278, 209–218 (1996)

    Article  ADS  Google Scholar 

  • Jog, C.J., Solomon, P.: A galactic disk as a two-fluid system: consequences for the critical stellar velocity dispersion and the formation of condensations in the gas. Astrophys. J. 276, 127–134 (1984a)

    Article  ADS  Google Scholar 

  • Jog, C.J., Solomon, P.: Two-fluid gravitational instabilities in a galactic disk. Astrophys. J. 276, 114–126 (1984b)

    Article  ADS  Google Scholar 

  • Kaur, A., Gulati, M.: Mathematical modeling of discs at the centre of galaxies. M.Sc. Thesis, Thapar Institute of Engineering and Technology (2018)

  • Khesali, A., Khosravi, A.: The local stability of accretion disk models with considering the role of various viscosity and cooling mechanisms. Astrophys. Space Sci. 348, 143–153 (2013)

    Article  ADS  Google Scholar 

  • Kormendy, J., Bender, R.: The double nucleus and central black hole of m31. Astrophys. J. 522, 772–792 (1999)

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory, vol. 3. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  • Lauer, T.R., Faber, S., Groth, E.J., et al.: Planetary camera observations of the double nucleus of m31. Astron. J. 106, 1436–1447 (1993)

    Article  ADS  Google Scholar 

  • Lauer, T.R., Faber, S., Ajhar, E.A., et al.: M\(32 \pm 1\). Astron. J. 116, 2263–2286 (1998)

    Article  ADS  Google Scholar 

  • Light, E., Danielson, R., Schwarzschild, M.: The nucleus of M31. Astrophys. J. 194, 257–263 (1974)

    Article  ADS  Google Scholar 

  • Miller, R.: Numerical experiments in collisionless systems. In: International Astronomical Union Colloquium, pp. 73–90. Cambridge University Press, Cambridge (1971)

    Google Scholar 

  • Rafikov, R.R.: The local axisymmetric instability criterion in a thin, rotating, multicomponent disc. Mon. Not. R. Astron. Soc. 323, 445–452 (2001)

    Article  ADS  Google Scholar 

  • Saini, T.D., Gulati, M., Sridhar, S.: Slow pressure modes in thin accretion discs. Mon. Not. R. Astron. Soc. 400, 2090–2097 (2009)

    Article  ADS  Google Scholar 

  • Sambhus, N., Sridhar, S.: Dynamical modeling of the stellar nucleus of M 31. Astron. Astrophys. 388, 766–770 (2002)

    Article  ADS  Google Scholar 

  • Sridhar, S., Saini, T.D.: Slow m = 1 instabilities of softened gravity Keplerian discs. Mon. Not. R. Astron. Soc. 404, 527–531 (2010)

    ADS  Google Scholar 

  • Takekawa, S., Oka, T., Iwata, Y., et al.: The fifth candidate for an intermediate-mass black hole in the galactic center. Astrophys. J. 890(2), 1–6 (2020)

    Article  Google Scholar 

  • Touma, J.: Unstable modes of Keplerian discs. Mon. Not. R. Astron. Soc. 333, 583–588 (2002)

    Article  ADS  Google Scholar 

  • Tremaine, S.: An eccentric disk model for the nucleus of M31. Astron. J. 110, 628–633 (1995)

    Article  ADS  Google Scholar 

  • Tremaine, S.: Slow modes in Keplerian disks. Astron. J. 121, 1776–1789 (2001)

    Article  ADS  Google Scholar 

  • Young, J., Scoville, N.: Molecular gas in galaxies. Annu. Rev. Astron. Astrophys. 29, 581–625 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Thapar Institute of Engineering and Technology, Patiala for SEED grant SEED/Money/TU/DORSP/57/3978 to support this research work. Further we acknowledge DST-FIST (Govt. of India) for the grant SR/FST/MS-1/2017/13 to support during the period of the present work. Authors would like to acknowledge H.K. Jassal for providing valuable suggestions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Gulati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, M., Gulati, M. Enhanced \(m = 1\) WKB instabilities in nearly Keplerian stellar discs due to the presence of gas. Astrophys Space Sci 367, 56 (2022). https://doi.org/10.1007/s10509-022-04077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04077-y

Keywords

Navigation