Skip to main content

Finch-Skea solutions of anisotropic stellar models in \(f(R)\) gravity

Abstract

Present paper deals with the composition and modelling of compact dense astrophysical bodies under the framework of \(f(R)\) gravity. The model is employed on various observed strange stars viz., SMC X-1, SAX J1808.4-3658, Swift J1818.0-1607, PSR J1614-2230 and PSR J0348+0432. Upon setting the appropriate value of dimensionless coupling parameter \(\lambda \), the physical parameters such as the density, the radial and tangential pressures were obtained. Mass-Radius relation without presuming any equation of state is capable enough to accommodate all strange stars nearly having solar mass up to 2.5. The physical viability of the model is examined for all the aforementioned stars and it is found that all the regularity and stability conditions are satisfied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    The surface redshift condition and Buchdahl’s condition are mentioned in Sects. 4.6 and 4.4 respectively.

References

  1. Abbas, G., et al.: Astrophys. Space Sci. 358(2), 26 (2015)

    ADS  Google Scholar 

  2. Abreu, H., et al.: Class. Quantum Gravity 24, 4631 (2007)

    ADS  Google Scholar 

  3. Antoniadis, J., et al.: (2013). arXiv:1304.6875

  4. Arzoumanian, Z., et al.: Astrophys. J. 235, 37 (2018)

    Google Scholar 

  5. Astashenok, A.V., et al.: Phys. Rev. D 89, 103509 (2014)

    ADS  Google Scholar 

  6. Astashenok, A.V., et al.: Class. Quantum Gravity 34, 20 (2017)

    MathSciNet  Google Scholar 

  7. Astashenok, A.V., et al.: (2019). arXiv:2001.08504

  8. Bhar, P.: Eur. Phys. J. C 79, 138 (2019)

    ADS  Google Scholar 

  9. Böhmer, C.G., Harko, T.: Class. Quantum Gravity 23, 6479 (2006)

    ADS  Google Scholar 

  10. Buchdahl, H.A.: Acta Phys. Pol. 10, 673 (1979)

    Google Scholar 

  11. Canuto, V.: Annu. Rev. Astron. Astrophys. 12, 167 (1974)

    ADS  Google Scholar 

  12. Demorest, P., et al.: (2010). arXiv:1010.5788

  13. Durgapal, M.C.: J. Phys. A, Math. Gen. 15, 2637 (1982)

    MathSciNet  ADS  Google Scholar 

  14. Egeland, E.: In: Compact Stars. Trondheim, Norway (2007)

    Google Scholar 

  15. Eisentein, D.J., et al.: Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  16. Elebert, p., et al.: Mon. Not. R. Astron. Soc. 395, 884 (2009)

    ADS  Google Scholar 

  17. Esposito, P., et al.: Astrophys. J. 896, 2 (2020)

    Google Scholar 

  18. Finch, M.R., Skea, J.E.F.: Class. Quantum Gravity 6(4), 467 (1989)

    ADS  Google Scholar 

  19. Goswami, R., et al.: Phys. Rev. D 90, 084011 (2014)

    ADS  Google Scholar 

  20. Hawkins, E., et al.: Mon. Not. R. Astron. Soc. 346, 78 (2003)

    ADS  Google Scholar 

  21. Herrera, L., Ospino, J., di Prisco, A.: Phys. Rev. D 77, 027502 (2008)

    MathSciNet  ADS  Google Scholar 

  22. Herrera, L., et al.: Phys. Rev. D 69, 084026 (2004)

    ADS  Google Scholar 

  23. Hossein, S.K.M., et al.: Int. J. Mod. Phys. D 21, 1250088 (2012)

    ADS  Google Scholar 

  24. Karmarkar, K.R.: Proc. Indian Acad. Sci. A 27, 56 (1948)

    Google Scholar 

  25. Krori, K.D., Barua, J.: J. Phys. A, Math. Gen. 8, 508 (1975)

    ADS  Google Scholar 

  26. Maharaj, S.D., Takisa, P.M.: Gen. Relativ. Gravit. 44, 1419 (2012)

    ADS  Google Scholar 

  27. Mak, M.K., Harko, T.: Int. J. Mod. Phys. D 13, 149 (2004)

    ADS  Google Scholar 

  28. Murad, M.H., Fatema, S.: Int. J. Theor. Phys. 52, 4342–4359 (2013)

    Google Scholar 

  29. Ovalle, J.: Phys. Rev. D 95, 104019 (2017)

    MathSciNet  ADS  Google Scholar 

  30. Pandya, D.M., Thomas, V.O., Sharma, R.S.: Astrophys. Space Sci. 356(2), 173 (2015)

    Google Scholar 

  31. Pandya, D.M., Thakore, B., Goti, R., Rank, J.P., Shah, S.: Astrophys. Space Sci. 365(2), 10 (2020)

    ADS  Google Scholar 

  32. Paul, B.C., et al.: Mod. Phys. Lett. A 26, 575 (2011)

    ADS  Google Scholar 

  33. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  34. Rahaman, R., et al.: Eur. Phys. J. C 72, 2071 (2012)

    ADS  Google Scholar 

  35. Rawls, M.L., et al.: Astrophys. J. 730, 25 (2011)

    ADS  Google Scholar 

  36. Ruderman, R.: Astron. Astrophys. 10, 427 (1972)

    Google Scholar 

  37. Sawyer, R.F.: Phys. Rev. Lett. 29(6), 382 (1972)

    ADS  Google Scholar 

  38. Sharma, R., Ratanpal, B.S.: Int. J. Mod. Phys. D 356(2), 1350074 (2013)

    Google Scholar 

  39. Sharif, M., Waseem, A.: Ann. Phys. 405, 14–28 (2019)

    ADS  Google Scholar 

  40. Singh, K.N., et al.: Chin. Phys. C 41, 015103 (2017)

    ADS  Google Scholar 

  41. Sokolov, A.I.: Sov. Phys. JETP 52(4), 575 (1980)

    ADS  Google Scholar 

  42. Starobinsky, A.A.: Phys. Lett. 91(1), 99–102 (1980)

    Google Scholar 

  43. Thirukkanesh, S., Ragel, F.S.: Pramana J. Phys. 78, 687 (2012)

    ADS  Google Scholar 

  44. Chao, X.-F.: Chin. J. Phys. 63, 240 (2019)

    Google Scholar 

  45. Zhao, X., et al.: (2017). arXiv:1712.05894

  46. Bhar, P.: Astrophys. Space Sci., 41, 359 (2015)

    Google Scholar 

  47. Maharaj, S.D., et al.: Int. J. Mod. Phys. D 3, 26 (2017)

    Google Scholar 

  48. Tikekar, R., Jotania, K.: Pramana J. Phys. 397(406), 68 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Pandit Deendayal Petroleum University, Gandinagar, India, and the Ludwig-Maximilians Universität, München, Germany, for providing a strong platform to discuss, ruminate upon and bring the manuscript to a physical fruition.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. M. Pandya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandya, D.M., Thakore, B., Goti, R.B. et al. Finch-Skea solutions of anisotropic stellar models in \(f(R)\) gravity. Astrophys Space Sci 366, 95 (2021). https://doi.org/10.1007/s10509-021-04000-x

Download citation

Keywords

  • Classical general relativity
  • Exact solutions
  • Relativistic stars: structure, stability and oscillations
  • Modified theories of gravity