Skip to main content

Poynting Robertson effects due to a logarithmic correction to the Newtonian potential

Abstract

We examine the Poynting-Robertson (PR) effect under the influence of a logarithmic predicted as a correction to the Newtonian gravitational potential in the solar system. Our motivation emanates from the fact that today’s gravitational theories predict various corrections such that exponential, logarithmic to describe and understand the existence of dark matter, postulated to resolve discrepancies in astrophysical observations in today’s accepted theories of gravity. By saying that we simply mean that our main interest is to calculate the times that dust particles take to reach the Earth’s orbit and derive analytical expressions for the time changes of basic orbital elements in the influence of the PR effect. We use dust particle starting at a distance \(r = 2.7~\text{AU}\) or approximately in the asteroid belt. In a first order perturbation treatment we obtain time solutions for the orbital elements of semi major axis, eccentricity, and mean motion, as well as expressions for the time taken for these particles to reach Earth’s orbit. We find that for circular orbits in a logarithmic potential the time taken to reach Earth is slightly larger that the elliptical orbits. Newtonian potential circular orbits require more times when compared to the logarithmic ones. Finally elliptical orbits time to reach Earth are of the same order of magnitude with a dependence on the eccentricity, density, and particle diameter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. de Pater, I., Lissauer, J.: Planetary Sciences 2nd edn. pp. 46–47. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  2. Debono, I., Smoot, G.F.: General relativity and cosmology: unsolved questions and future directions. Universe 2(4), 23 (2016)

    ADS  Article  Google Scholar 

  3. Diacu, F.N.: Report DMS-621-IR, University of Victoria (1992)

  4. Fabris, J.C., Campos, J.P.: Gen. Relativ. Gravit. 41, 93 (2009)

    ADS  Article  Google Scholar 

  5. Haranas, I., Mioc, V.: Poynting Robertson effect in a non singular potential. Astrophys. Space Sci. 331, 289–294 (2011)

    ADS  Article  Google Scholar 

  6. Haranas, I., Ragos, O.: Yukawa effects in satellite dynamics. Astrophys. Space Sci. 331(1), 115–119 (2011)

    ADS  Article  Google Scholar 

  7. Haranas, I., Ragos, O., Mioc, V.: Yukawa-type potential effects in the anomalistic period of celestial bodies. Astrophys. Space Sci. 332(1), 107–113 (2010)

    ADS  Article  Google Scholar 

  8. Haranas, I., Ragos, O., Gkigkitzis, I., Kotsireas, I., Martz, C., Van Middekoop, S.: The Poynting-Robertson effect in the Newtonian potential with a Yukawa correction. Astrophys. Space Sci. 363, 3 (2018). https://doi.org/10.1007/s10509-017-3219-4

    ADS  MathSciNet  Article  Google Scholar 

  9. Haranas, I., Cobbett, K., Gkigkitzis, I., Alexiou, A., Cavan, E.: Modified Newtonian dynamics effects in a region dominated by dark matter and a cosmological constant \(\Lambda \). Astrophys. Space Sci. 365, 171 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  10. Iorio, L.: Editorial for the special issue 100 years of chronogeometrodynamics: the status of the Einstein’s theory of gravitation in its centennial year. Universe 1(1), 38–81 (2015)

    ADS  Article  Google Scholar 

  11. Jiménez, J.B., Heisenberg, L., Koivisto, T.S.: The geometrical trinity of gravity. Universe 5, 173 (2019)

    ADS  Article  Google Scholar 

  12. Jung, C.H., Kim, Y.P.: Technical note: particle extinction coefficient for polydispersed aerosol using a harmonic mean type general approximated solution. Aerosol Sci. Technol. 41, 994–1001 (2007)

    ADS  Article  Google Scholar 

  13. Kinney, W.H., Brisudova, M.: An attempt to do without dark matter. Ann. N.Y. Acad. Sci. 927, 127–135 (2001)

    ADS  Article  Google Scholar 

  14. Kirillov, A.A.: Phys. Lett. B 632, 453 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  15. Klacka, J., Kocifaj, M.: Times of inspiralling for interplanetary dust grains. Mon. Not. R. Astron. Soc. 390, 1491–1495 (2008)

    ADS  Google Scholar 

  16. Krugel, E.: An Introduction to the Physics of Interstellar Dust, pp. 74–75. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  17. Lovell, A.C.B.: Meteor Astronomy. Clarendon Press, Oxford (1954)

    Google Scholar 

  18. Milgrom, M.: Astrophys. J. 270, 365 (1983)

    ADS  Article  Google Scholar 

  19. Mioc, V., Blaga, P.: Rom. Astron. J. 1, 103 (1991)

    ADS  Google Scholar 

  20. Mücket, J.P., Treder, H.-J.: Astron. Nachr. 298, 65 (1977)

    ADS  Article  Google Scholar 

  21. Murray, C.D., Dermott, S.F.: Solar System Dynamics p. 41. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Phillips, A.C.: The Physics of Stars. Wiley and Son, New York (1999)

    Google Scholar 

  23. Ragos, O., Haranas, I., Gkigkitzis, I.: Astrophys. Space Sci. 345, 67 (2013)

    ADS  Article  Google Scholar 

  24. Salucci, P., Walter, F., Borriello, A.: \(\Lambda\text{CDM}\) and the distribution of dark matter in galaxies: a constant–density halo around DDO 47. Astron. Astrophys. 409(1), 53–56 (2003)

    ADS  Article  Google Scholar 

  25. Sanders, R.H., Noordermeer, E.: Mon. Not. R. Astron. Soc. 379, 702 (2007)

    ADS  Article  Google Scholar 

  26. Sanders, R.H., McGaugh, S.S.: Annu. Rev. Astron. Astrophys. 40, 263–317 (2002)

    ADS  Article  Google Scholar 

  27. Skordis, C.: Phys. Rev. D 77, 123502 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  28. Sparke, L.S., Gallagher, J.S. III: Galaxies in the Universe: An Introduction. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  29. Vishwakarma, R.G.: Einstein and beyond: a critical perspective on general relativity. Universe 2(2), 16 (2016)

    ADS  Article  Google Scholar 

  30. Walter, U.: Astronautics: The Physics of Space Flight, 3rd edn. p. 621. Springer, Berlin (2018)

    Book  Google Scholar 

  31. Wyatt, S.P., Whipple, F.L.: The Poynting-Robertson effect on meteor orbits. Astrophys. J. 111, 134–141 (1950)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank an anonymous reviewer who with his comments helped improve this manuscript considerably.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis Haranas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haranas, I., Gkigkitzis, I., Cobbett, K. et al. Poynting Robertson effects due to a logarithmic correction to the Newtonian potential. Astrophys Space Sci 366, 93 (2021). https://doi.org/10.1007/s10509-021-03998-4

Download citation

Keywords

  • Poynting-Robertson effect
  • Solar radiation
  • Dust
  • Logarithmic potential
  • Dark matter
  • Baryonic matter