Skip to main content

Wavelength dependent transit depth of HATS-5b: a haze dominant atmosphere?

Abstract

The wavelength-dependent transit depth indicates the atmosphere composition of an exoplanet. We analyze the transit depth of HATS-5b using the data from the Transiting Exoplanet Survey Satellite (TESS) and compare the radius ratio of the planet to the star with the different band result in previous work. We generate a photometric pipeline to obtain the TESS light curve. The fitting of the HATS-5b light curve derives similar bandpass independent parameters compared to the reference work, e.g., the differences in the inclination and the semi-major axis within 1\(\sigma\). We fix the bandpass-independent parameters to values from the previous work for comparison purposes. The wavelength-dependent \(R_{p}/R_{\ast}\) obtained is 2.5% (1.9\(\sigma\)) smaller compared to the joint band result from the referenced work. The difference of \(R_{p}\)/\(R_{\ast}\) suggests a haze-dominant model preferred by observation (with \(\chi^{2}=1.68\)) when fitting with different atmospheric models. The opaque featureless atmospheric model has a \(\chi^{2}\sim4\), while the other models are ruled out with \(\chi^{2}> 7\). We also predict an \(R_{p}/R_{\ast}\) difference of ∼1\(\%\), correlating the presence of water at \(z\)-band observation. This difference is detectable at 3\(\sigma\) if the photometry precision reaches 500 ppm with 2 minute exposure for one-night observation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    The code for the correction is available: https://github.com/sailoryf/TESS_Deblending/.

  2. 2.

    https://exoplanetarchive.ipac.caltech.edu/.

  3. 3.

    https://astroquery.readthedocs.io/en/latest/.

References

  1. Birkby, J.L., de Kok, R.J., Brogi, M., de Mooij, E.J.W., Schwarz, H., Albrecht, S., Snellen, I.A.G.: Mon. Not. R. Astron. Soc. 436, L35 (2013)

    ADS  Article  Google Scholar 

  2. Bonomo, A.S., et al.: Astron. Astrophys. 602, A107 (2017)

    Article  Google Scholar 

  3. Charbonneau, D., Brown, T.M., Noyes, R.W., Gilliland, R.L.: Astrophys. J. 568, 377 (2002)

    ADS  Article  Google Scholar 

  4. Claret, A.: Astron. Astrophys. 618, A20 (2018)

    ADS  Article  Google Scholar 

  5. Deming, D., et al.: Publ. Astron. Soc. Pac. 121, 952 (2009)

    ADS  Article  Google Scholar 

  6. Deming, D., Seager, S., Richardson, L.J., Harrington, J.: Nature 434, 740 (2005)

    ADS  Article  Google Scholar 

  7. Drummond, B., Tremblin, P., Baraffe, I., Amundsen, D.S., Mayne, N.J., Venot, O., Goyal, J.: Astron. Astrophys. 594, A69 (2016)

    ADS  Article  Google Scholar 

  8. Gaia Collaboration, et al.: Astron. Astrophys. 616, A1 (2018)

    Article  Google Scholar 

  9. Gibson, N.P., Aigrain, S., Roberts, S., Evans, T.M., Osborne, M., Pont, F.: Mon. Not. R. Astron. Soc. 419, 2683 (2012)

    ADS  Article  Google Scholar 

  10. Goyal, J.M., et al.: Mon. Not. R. Astron. Soc. 474, 5158 (2018)

    ADS  Article  Google Scholar 

  11. Goyal, J.M., Wakeford, H.R., Mayne, N.J., Lewis, N.K., Drummond, B., Sing, D.K.: Mon. Not. R. Astron. Soc. 482, 4503 (2019)

    ADS  Article  Google Scholar 

  12. Hebb, L., et al.: Astrophys. J. 693, 1920 (2009)

    ADS  Article  Google Scholar 

  13. Karkoschka, E., Tomasko, M.G.: Icarus 211, 780 (2011)

    ADS  Article  Google Scholar 

  14. Kempton, E.M.R., et al.: Publ. Astron. Soc. Pac. 130, 114401 (2018)

    ADS  Article  Google Scholar 

  15. Kipping, D.M.: Mon. Not. R. Astron. Soc. 408, 1758 (2010)

    ADS  Article  Google Scholar 

  16. Liu, Y.J., et al.: Astrophys. J. 672, 553 (2008)

    ADS  Article  Google Scholar 

  17. Madhusudhan, N.: Annu. Rev. Astron. Astrophys. 57, 617 (2019)

    ADS  Article  Google Scholar 

  18. Mandel, K., Agol, E.: Astrophys. J. 580, L171 (2002)

    ADS  Article  Google Scholar 

  19. Moran, S.E., Hörst, S.M., Batalha, N.E., Lewis, N.K., Wakeford, H.R.: Astron. J. 156, 252 (2018)

    ADS  Article  Google Scholar 

  20. Patil, A., Huard, D., Fonnesbeck, C.J.: J. Stat. Softw, 1–81 (2010)

  21. Pollacco, D.L., et al.: Publ. Astron. Soc. Pac. 118, 1407 (2006)

    ADS  Article  Google Scholar 

  22. Pont, F., Knutson, H., Gilliland, R.L., Moutou, C., Charbonneau, D.: Mon. Not. R. Astron. Soc. 385, 109 (2008)

    ADS  Article  Google Scholar 

  23. Ricker, G.R., et al.: J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015)

    ADS  Article  Google Scholar 

  24. Shporer, A., et al.: Astrophys. J. Lett. 890, L7 (2020)

    ADS  Article  Google Scholar 

  25. Sing, D.K., et al.: Nature 529, 59 (2016)

    ADS  Article  Google Scholar 

  26. Siverd, R.J., et al.: Astrophys. J. 761, 123 (2012)

    ADS  Article  Google Scholar 

  27. Smith, J.C., et al.: Publ. Astron. Soc. Pac. 124, 1000 (2012)

    ADS  Article  Google Scholar 

  28. Tinetti, G., Deroo, P., Swain, M.R., Griffith, C.A., Vasisht, G., Brown, L.R., Burke, C., McCullough, P.: Astrophys. J. Lett. 712, L139 (2010)

    ADS  Article  Google Scholar 

  29. Tremblin, P., Amundsen, D.S., Chabrier, G., Baraffe, I., Drummond, B., Hinkley, S., Mourier, P., Venot, O.: Astrophys. J. Lett. 817, L19 (2016)

    ADS  Article  Google Scholar 

  30. Tremblin, P., Amundsen, D.S., Mourier, P., Baraffe, I., Chabrier, G., Drummond, B., Homeier, D., Venot, O.: Astrophys. J. Lett. 804, L17 (2015)

    ADS  Article  Google Scholar 

  31. Wang, S., et al.: Astron. J. 157, 51 (2019)

    ADS  Article  Google Scholar 

  32. Wang, W., van Boekel, R., Madhusudhan, N., Chen, G., Zhao, G., Henning, T.: Astrophys. J. 770, 70 (2013)

    ADS  Article  Google Scholar 

  33. Yang, F., et al.: Astron. J. 161, 294 (2021)

    ADS  Article  Google Scholar 

  34. Yang, F., Chary, R.-R., Liu, J.-F.:. arXiv:2012.08744. 2020a, arXiv e-prints

  35. Yang, F., et al.: Astrophys. J. Suppl. Ser. 249, 31 (2020b)

    ADS  Article  Google Scholar 

  36. Zhou, G., et al.: Astron. J. 147, 144 (2014)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We highly appreciate the constructive comments by the referee. This work utilizes the NASA Exoplanet Archive,Footnote 2 Astroquery,Footnote 3 and the Mikulski Archive for Space Telescopes (MAST). We would like to thank Richard J. Long for the helpful discussion and You-Jun Lu for constructive feedback. Fan Yang, Su-Su Shan, and Ji-Feng Liu acknowledge fundings from the National Key Research and Development Program of China (No. 2016YFA0400800), the National Science Fund for Distinguished Young Scholars (No. 11425313), and the National Natural Science Foundation of China (NSFC. 11988101). X. W. is supported by the National Natural Science Foundation of China (No. 11872246, 12041301) and Beijing Natural Science Foundation (No. 1202015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Shan, SS., Guo, R. et al. Wavelength dependent transit depth of HATS-5b: a haze dominant atmosphere?. Astrophys Space Sci 366, 83 (2021). https://doi.org/10.1007/s10509-021-03989-5

Download citation

Keywords

  • Planets and satellites: atmospheres
  • Planets and satellites: gaseous planets
  • Planets and satellites: composition
  • Planets and satellites: individual (HATS-5b)