Nuclear structure properties and decay rates of molybdenum isotopes

Abstract

Electron capture and \(\beta ^{-}\) decay are the dominant decay processes during late phases of evolution of heavy stars. Previous simulation results show that weak rates on isotopes of Molybdenum (Mo) have a meaningful contribution during the development of phases of stars before they go supernova. The relative abundance coupled with the stellar weak rates on Mo isotopes may change the lepton-to-baryon content of the core material. Here we report on the calculation of nuclear structure properties of 82−138Mo isotopes employing the RMF model. Later we calculate the weak decay rates of these isotopes. We use the pn-QRPA model to compute these rates. In the first step, the ground-state nuclear properties of Mo isotopes such as binding energy per nucleon, neutron and proton separation energies, charge radii, total electric quadrupole moments and deformation parameter of electric quadrupole moments have been calculated using density dependent version of RMF model with DD-PC1 and DD-ME2 functionals. The calculated electric quadrupole deformation parameters have been used in a deformed pn-QRPA calculation in the second phase of this work to calculate half-lives and weak decay rates for these Mo isotopes in stellar matter. We calculate the electron capture and \(\beta \)-decay rates over an extensive range of temperature (\(0.01\times 10^{9}\) K to \(30\times 10^{9}\) K) and density (10 to \(10^{11}\)) g/cm3. Our study can prove useful for simulation of presupernova evolution processes of stars.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Agbemava, S.E., Afanasjev, A.V., Ray, D., Ring, P.: Phys. Rev. C 89, 54320 (2014)

    ADS  Google Scholar 

  2. Angeli, I., Marinova, K.P.: At. Data Nucl. Data Tables 99, 69 (2013)

    ADS  Google Scholar 

  3. Audi, G., et al.: Chin. Phys. C 41, 030001 (2017)

    ADS  Google Scholar 

  4. Axel, P.: Phys. Rev. 671, 126 (1962)

    Google Scholar 

  5. Baade, W., Zwicky, F.: Proc. Natl. Acad. Sci. 20, 254 (1934)

    ADS  Google Scholar 

  6. Bayram, T., Akkoyun, S.: Phys. Scr. 87, 065201 (2013)

    ADS  Google Scholar 

  7. Bayram, T., Yilmaz, A.H.: Mod. Phys. Lett. A 28, 1350068 (2013)

    ADS  Google Scholar 

  8. Bayram, T., Akkoyun, S., Senturk, S.: Phys. At. Nucl. 81, 288 (2018)

    Google Scholar 

  9. Bethe, H.A.: Phys. Rev. 55, 434–456 (1939)

    ADS  Google Scholar 

  10. Boguta, J., Bodmer, A.R.: Nucl. Phys. A 292, 413 (1977)

    ADS  Google Scholar 

  11. Borzov, I.N.: Nucl. Phys. A 777, 645 (2006)

    ADS  Google Scholar 

  12. Brink, D., Phil, D.: Thesis, Oxford University (1955). Unpublished

  13. Burbidge, E.M., Burbidge, G.R., Fowler, W.A., Hoyle, F.: Rev. Mod. Phys. 29, 547 (1957)

    ADS  Google Scholar 

  14. Dechargé, J., Gogny, D.: Phys. Rev. C 21, 1568 (1980)

    ADS  Google Scholar 

  15. Gambhir, Y.K., Ring, P., Thimet, A.: Ann. Phys. 198, 132 (1990)

    ADS  Google Scholar 

  16. Geng, L., Toki, H., Sugimoto, S., Meng, J.: Prog. Theor. Phys. 110, 921 (2003)

    ADS  Google Scholar 

  17. Geng, L., Toki, H., Meng, J.: Prog. Theor. Phys. 113, 785 (2005)

    ADS  Google Scholar 

  18. Gove, N.B., Martin, M.J.: At. Data Nucl. Data Tables 10, 205 (1971)

    ADS  Google Scholar 

  19. Greiner, W., Maruhn, J.A.: Nuclear Models p. 99. Springer, Heidelberg (1996)

    Google Scholar 

  20. Hardy, J.C., Towner, I.S.: Phys. Rev. C 79(5), 055502 (2009)

    ADS  Google Scholar 

  21. Hix, W.R., Messer, O.E.B., Mezzacappa, A., Liebendrfer, M., Sampaio, J., Langanke, K., Dean, D.J., Martinez-Pinedo, G.: Phys. Rev. Lett. 91, 201102 (2003)

    ADS  Google Scholar 

  22. Homma, H., Bender, E., Hirsch, M., Muto, K., KlapdorKleingrothaus, H.V., Oda, T.: Phys. Rev. C 54, 2972 (1996)

    ADS  Google Scholar 

  23. Lalazissis, G.A., Raman, S., Ring, P.: At. Data Nucl. Data Tables 71, 1 (1999)

    ADS  Google Scholar 

  24. Lalazissis, G.A., Nikšić, T., Vretenar, D., Ring, P.: Phys. Rev. C 71, 024312 (2005)

    ADS  Google Scholar 

  25. Lalazissis, G.A., Karatzikos, S., Fossion, R., Pena Artega, D., Afanasjev, A.V., Ring, P.: Phys. Rev. C 36, 671 (2009)

    Google Scholar 

  26. Langanke, K., Martinez-Pinedo, G.: Nucl. Data Tables 79, 1 (2001)

    ADS  Google Scholar 

  27. Langanke, K., Martinez-Pinedo, G., Sampaio, J.M., Dean, D.J., Hix, W.R., Messer, O.E.B., Mezzacappa, A., Liebend Orfer, M., Th, J.H., Rampp, M.: Phys. Rev. Lett. 90, 241102 (2003)

    ADS  Google Scholar 

  28. Lenske, H., Fuchs, C.: Phys. Lett. B 345, 355 (1995)

    ADS  Google Scholar 

  29. Lu, K.Q., Li, Z.X., Li, Z.P., Yao, J.M., Meng, J.: Phys. Rev. C 91, 027304 (2015)

    ADS  Google Scholar 

  30. Möller, P., Nix, J.R., Kratz, K.-L.: At. Data Nucl. Data Tables 66, 131 (1997)

    ADS  Google Scholar 

  31. Mustonen, M.T., Engel, J.: Phys. Rev. C 93, 014304 (2016)

    ADS  Google Scholar 

  32. Muto, K., Bender, E., Oda, T., K-Kleingrothaus, H.V.: Z. Phys. A 341, 407 (1992)

    ADS  Google Scholar 

  33. Nabi, J.-U., Klapdor-Kleingrothaus, H.V.: At. Data Nucl. Data Tables 71, 149 (1999)

    ADS  Google Scholar 

  34. Nabi, J.-U., Klapdor-Kleingrothaus, H.V.: At. Data Nucl. Data Tables 88, 237 (2004)

    ADS  Google Scholar 

  35. Nakamura, K. (Particle Data Group): J. Phys. G, Nucl. Part. Phys. 37(7A), 075021 (2010)

    ADS  Google Scholar 

  36. Nikšić, T., Vretenar, D., Ring, P.: Phys. Rev. C 78, 034318 (2008)

    ADS  Google Scholar 

  37. Nikšić, T., Paar, M., Vretenar, D., Ring, P.: Comput. Phys. Commun. 185, 1808 (2014)

    ADS  Google Scholar 

  38. Nilsson, S.G.: Mat.-Fys. Medd. Danske Vid. Selsk. 29, 1 (1955)

    Google Scholar 

  39. Peña-Arteagaa, D., Goriely, S., Chamel, N.: Eur. Phys. J. A 52, 320 (2016)

    ADS  Google Scholar 

  40. Piekarewicz, J.: Phys. Rev. C 66, 034305 (2002)

    ADS  Google Scholar 

  41. Ragnarsson, I., Sheline, R.K.: Phys. Scr. 29, 385 (1984)

    ADS  Google Scholar 

  42. Ring, P.: Prog. Theor. Phys. 37, 193 (1996)

    Google Scholar 

  43. Ring, P., Gambhir, Y.K., Lalazissis, G.A.: Comput. Phys. Commun. 105, 77 (1997)

    ADS  Google Scholar 

  44. Rönnqvist, T., et al.: Nucl. Phys. A 563, 225 (1993)

    ADS  Google Scholar 

  45. Sarriguren, P.: Phys. Rev. C 87, 045801 (2013)

    ADS  Google Scholar 

  46. Stoitsov, M.V., Dobaczewski, J., Nazarewicz, W., Pittel, S., Dean, D.J.: Phys. Rev. C 68, 054312 (2003)

    ADS  Google Scholar 

  47. Sugahara, Y., Toki, H.: Nucl. Phys. A 579, 557 (1994)

    ADS  Google Scholar 

  48. Tian, Y., Ma, Z., Ring, P.: Phys. Rev. C 80, 024313 (2009)

    ADS  Google Scholar 

  49. Typel, S., Wolter, H.H.: Nucl. Phys. A 656, 331 (1999)

    ADS  Google Scholar 

  50. Vautherin, D., Brink, D.M.: Phys. Rev. C 5, 626 (1972)

    ADS  Google Scholar 

  51. Vetterli, M.C., et al.: Phys. Rev. C 40, 559 (1989)

    ADS  Google Scholar 

  52. Vretenar, D., Afanasjev, A.V., Lalazissis, G.A., Ring, P.: Phys. Rep. 409, 101 (2005)

    ADS  Google Scholar 

  53. Walecka, J.D.: Ann. Phys. 83, 491 (1974)

    ADS  Google Scholar 

  54. Wang, M., Audi, G., Kondev, F.G., Huang, W.J., Naimi, S., Xu, X.: Chin. Phys. C 41, 030003 (2016)

    Google Scholar 

  55. Yilmaz, A.H., Bayram, T.: J. Korean Phys. Soc. 59, 3329 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge useful discussion with Mr. Kaleem Ullah. J.-U. Nabi would like to acknowledge the support of the Higher Education Commission Pakistan through project numbers 5557/KPK/NRPU/R\(\&\)D/HEC/2016, 9-5(Ph-1-MG-7)/PAK-TURK/R\(\&\)D/HEC/2017 and Pakistan Science Foundation through project number PSF-TUBITAK/KP-GIKI (02). T. Bayram would like to acknowledge the support of the Turkish Higher Education Council with Mevlana Exchange Program through project number MEV-2016-094.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jameel-Un Nabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nabi, JU., Bayram, T. Nuclear structure properties and decay rates of molybdenum isotopes. Astrophys Space Sci 365, 19 (2020). https://doi.org/10.1007/s10509-020-3735-5

Download citation

Keywords

  • Electron capture and \(\beta \)-decay rates
  • Nuclear ground-state properties
  • Gamow-Teller strength
  • pn-QRPA model
  • RMF model
  • Molybdenum isotopes
  • Stellar evolution