Abstract
We investigate whether certain extra-solar multi-planet systems simultaneously follow the scaling and spacing rules of the angular-momentum-deficit model. The masses and semi-major axes of exoplanets in ten multi-planet systems are considered. It is found that GJ 667C, HD 215152, HD 40307, and Kepler-79 systems are currently close to configurations of the angular-momentum-deficit model. In a gas-poor scenario, GJ 3293, HD 141399, and HD 34445 systems are those which had a configuration of the angular-momentum-deficit model in the past and get scattered away due to post gaseous effects. In addition, no matter in gas-free or gas-poor scenario, 55 Cnc, GJ 876, and WASP-47 systems do not follow the angular-momentum-deficit model. Therefore, our results reveal important formation histories of these multi-planet systems.
This is a preview of subscription content, access via your institution.






References
Anglada-Escude, G., et al.: Astron. Astrophys. 556, A126 (2013)
Aschwanden, M.J.: New Astron. 58, 107 (2018)
Astudillo-Defru, N., et al.: Astron. Astrophys. 602, A88 (2017)
Bovaird, T., Lineweaver, C.H.: Mon. Not. R. Astron. Soc. 435, 1126 (2013)
Chambers, J.: Icarus 152, 205 (2001)
Christodoulou, D.M., Kazanas, D.: Res. Astron. Astrophys. 17, 129 (2017)
Cuntz, M.: Publ. Astron. Soc. Jpn. 64, 73 (2012)
Delisle, J.-B., et al.: Astron. Astrophys. 614, A133 (2018)
Diaz, R.F., et al.: Astron. Astrophys. 585, A134 (2016)
Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman J.: Publ. Astron. Soc. Pac. 125, 306 (2013
Griv, E., Gedalin, M.: Dynamics of Populations of Planetary Systems. Knezevic, Z., Milani, A. (eds.): Proceedings of IAU Colloquium 197, p. 97. Cambridge University Press, Cambridge (2005)
Hayes, W., Tremaine, S.: Icarus 135, 549 (1998)
Hebrard, G., et al.: Astron. Astrophys. 588, A145 (2016)
Huang, C.X., Bakos, G.A.: Mon. Not. R. Astron. Soc. 442, 674 (2014)
Jenkins, J.S., et al.: Mon. Not. R. Astron. Soc. 441, 2253 (2014)
Jiang, I.-G., Yeh, L.-C., Hung, W.-L., Yang, M.-S.: Mon. Not. R. Astron. Soc. 370, 1379 (2006)
Jiang, I.-G., Yeh, L.-C., Chang, Y.-C., Hung, W.-L.: Astron. J. 134, 2061 (2007)
Jiang, I.-G., Yeh, L.-C., Chang, Y.-C., Hung, W.-L.: Astron. J. 137, 329 (2009)
Jiang, I.-G., Yeh, L.-C., Chang, Y.-C., Hung, W.-L.: Astrophys. J. Suppl. Ser. 186, 48 (2010)
Jiang, I.-G., Yeh, L.-C., Hung, W.-L.: Mon. Not. R. Astron. Soc. 449, L65 (2015)
Jontof-Hutter, D., et al.: Astrophys. J. 785, 15 (2014)
Laskar, J.: Phys. Rev. Lett. 84, 3240 (2000)
Laskar, J., Petit, A.C.: Astron. Astrophys. 605, A72 (2017)
Lynch, P.: Mon. Not. R. Astron. Soc. 341, 1174 (2003)
Nelson, B.E., et al.: Mon. Not. R. Astron. Soc. 441, 442 (2014)
Patton, J.M.: Celest. Mech. 44, 365 (1988)
Pletser, V.: Astrophys. Space Sci. 364, 158 (2019)
Poveda, A., Lara, P.: Rev. Mex. Astron. Astrofís. 44, 243 (2008)
Press, W.H., et al.: Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1992)
Rawal, J.J.: Astrophys. Space Sci. 119, 159 (1986)
Tabachnik, S., Tremaine, S.: Mon. Not. R. Astron. Soc. 335, 151 (2002)
Vogt, S.S., et al.: Astron. J. 154, 181 (2017)
Wall, J.V., Jenkins, C.R.: Practical Statistics for Astronomers. Cambridge University Press, Cambridge (2003)
Weiss, L.M., et al.: Astron. J. 153, 265 (2017)
Zucker, S., Mazeh, T.: Astrophys. J. 568, L113 (2002)
Acknowledgements
We are grateful to the referee, Manfred Cuntz, for very helpful suggestions. This work is supported in part by the Ministry of Science and Technology, Taiwan, under Li-Chin Yeh’s Grant MOST106-2115-M-007-014 and Ing-Guey Jiang’s Grant MOST106-2112-M-007-006-MY3.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A
The data of ten systems are listed here (Table 4), where \(m\) is the planetary minimum mass with lower error bound \(m_{-}\) and upper error bound \(m_{+}\); \(a\) is the planetary semi-major axis with lower error bound \(a_{-}\) and upper error bound \(a_{+}\).
Appendix B
(1)
Let the parameter \(p=X^{+x_{+}}_{-x_{-}}\), i.e. a value \(X\) with upper error bound \(x_{+}\) and lower error bound \(x_{-}\); the parameter \(q=Y^{+y_{+}}_{-y_{-}}\), i.e. a value \(Y\) with upper error bound \(y_{+}\) and lower error bound \(y_{-}\). In order to determine the upper and lower error bounds of the parameter ratio \(p/q\), we need the expression that when \(|s| << 1\), \({1}/{(1+s)} \approx1-s\). From below
we know the maximum is
and the upper error bound is
Similarly, the minimum is
and the lower error bound is
(2)
Given that the value of \(x\) has an upper error bound \(x_{+}\) and a lower error bound \(x_{-}\), the upper and lower error bounds of a general function \(f(x)\) can be determined through Taylor series. When \(x_{+}\) and \(x_{-}\) are small, using \(\Delta x\) to denote \(x_{+}\) or \(-x_{-}\), we have
The term \(f'(x)\Delta x\) is thus used as the error estimation. It equals to \(f'(x)x_{+}\) or \(-f'(x)x_{-}\). When \(f'(x)\) is positive, the upper error bound of \(f(x)\) is \(f'(x)x_{+}\), and the lower error bound of \(f(x)\) is \(f'(x)x_{-}\). When \(f'(x)\) is negative, the upper error bound of \(f(x)\) is \(-f'(x)x_{-}\), and the lower error bound of \(f(x)\) is \(-f'(x)x_{+}\). For example, when the function \(f(x)=\ln(x)\), \(f'(x)>0\), the upper and lower error bounds are \({x_{+}}/{x}\) and \({x_{-}}/{x}\).
(3)
Given that the value of \(x\) has an upper error bound \(x_{+}\) and a lower error bound \(x_{-}\), the value of \(y\) has an upper error bound \(y_{+}\) and a lower error bound \(y_{-}\), the upper and lower error bounds of a general function \(f(x,y)\), where \(x\) and \(y\) are two independent variables, can be determined through Taylor series. When \(x_{+}\), \(x_{-}\), \(y_{+}\), and \(y_{-}\) are small, using \(\Delta x\) to denote \(x_{+}\) or \(-x_{-}\) and \(\Delta y\) to denote \(y_{+}\) or \(-y_{-}\), we have
The summation of below two terms, i.e.
is thus used as the error estimation. Its four possible values can be determined after \(\Delta x\) is substituted by \(x_{+}\) or \(-x_{-}\), and \(\Delta y\) is substituted by \(y_{+}\) or \(-y_{-}\). The maximum value would be positive, and the minimum value would be negative. The upper error bound of \(f(x,y)\) is then equal to this maximum, and the lower error bound of \(f(x,y)\) is the absolute value of the minimum.
Rights and permissions
About this article
Cite this article
Yeh, LC., Jiang, IG. & Gajendran, S. On the scaling and spacing of extra-solar multi-planet systems. Astrophys Space Sci 365, 186 (2020). https://doi.org/10.1007/s10509-020-03899-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-020-03899-y
Keywords
- Planetary systems
- Stars: individual