Abstract
This study aims to predict daily ionospheric Total Electron Content (TEC) using Gaussian Process Regression (GPR) model and Multiple Linear Regression (MLR). In this case, daily TEC values from 2015 to 2017 of two Global Navigation Satellite System (GNSS) stations were collected in Turkey. The performance of the GPR model was compared with the classical MLR model using Taylor diagrams and relative error graphs. Six models with various input parameters were performed for both GPR and MLR techniques. The results showed that although the models perform similarly, the GPR model estimated the TEC values more precisely at one and two days ahead. Therefore, the GPR model is recommended to forecast the TEC values at the corresponding GNSS stations over Turkey.
This is a preview of subscription content, access via your institution.












References
Ackermann, E.R., De Villiers, J.P., Cilliers, P.J.: Nonlinear dynamic systems modeling using Gaussian processes: predicting ionospheric total electron content over South Africa. J. Geophys. Res. Space Phys. 116, A10 (2011)
Albert, J.G., Oei, M.S.S.L., van Weeren, R.J., Intema, H.T., Röttgering, H.J.A.: A probabilistic approach to direction-dependent ionospheric calibration. Astron. Astrophys. 633, A77 (2020)
Anderson, D.N., Forbes, J.M., Codrescu, M.: A fully analytic, low-and middle-latitude ionospheric model. J. Geophys. Res. Space Phys. 94(A2), 1520–1524 (1989)
Ansari, K., Panda, S.K., Althuwaynee, O.F., Corumluoglu, O.: Ionospheric TEC from the Turkish Permanent GNSS Network (TPGN) and comparison with ARMA and IRI models. Astrophys. Space Sci. 362, 178 (2017)
Ansari, K., Panda, S.K., Corumluoglu, O.: Mathematical modelling of ionospheric TEC from Turkish permanent GNSS network (TPGN) observables during 2009-2017 and predictability of NeQuick and Kriging models. Astrophys. Space Sci. 363(3), 42 (2018). https://doi.org/10.1007/s10509-018-3261-x
Ansari, K., Panda, S.K., Jamjareegulgarn, P.: Singular spectrum analysis of GPS derived ionospheric TEC variations over Nepal during the low solar activity period. Acta Astronaut. 169, 216–223 (2020)
Bent, R.B., Llewellyn, S.K., Schmid, P.E.: A highly successful empirical model for the worldwide ionospheric electron density profile. In: DBA Systems, Melbourne, Florida, USA (1972)
Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., Huang, X.: International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2), 418–429 (2017)
Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., Radicella, S.M.: Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 81, 111 (2007). https://doi.org/10.1007/s00190-006-0093-1
Elmunim, N.A., Abdullah, M., Hasbi, A.M., Bahari, S.A.: Comparison of statistical Holt-Winter models for forecasting the ionospheric delay using GPS observations. Indian J. Radio Space Phys. 44(1), 28–34 (2015)
Ghorbani, M.A., Khamnei, H.J., Asadi, H., Yousefi, P.: Application of chaos theory and genetic programming in runoff time series. Int. J. Struct. Civ. Eng. 1(2), 26–34 (2012)
Girard, A., Rasmussen, C.E., Quiñonero-Candela, J., Murray-Smith, R.: Gaussian process priors with uncertain inputs_application to multiple-step ahead time series forecasting. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing System 15, pp. 529–536. MIT Press, Cambridge (2003)
Gulyaeva, T.L., Arikan, F., Hernandez-Pajares, M., Stanislawska, I.: GIM-TEC adaptive ionospheric weather assessment and forecast system. J. Atmos. Sol.-Terr. Phys. 102, 329–340 (2013)
Hajra, R., Chakraborty, S.K., Tsurutani, B.T., DasGupta, A., Echer, E., Brum, C.G., Sobral, J.H.A.: An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA). J. Space Weather Space Clim. 6, A29 (2016)
Inyurt, S., Sekertekin, A.: Modeling and predicting seasonal ionospheric variations in Turkey using artificial neural network (ANN). Astrophys. Space Sci. 364(4), 62 (2019)
Inyurt, S., Yildirim, O., Mekik, C.: Comparison between IRI-2012 and GPS-TEC observations over the western Black Sea. Ann. Geophys. 35(4), 817 (2017)
Klobuchar, J.A.: Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 3, 325–331 (1987)
Lean, J.L., Emmert, J.T., Picone, J.M., Meier, R.R.: Global and regional trends in ionospheric total electron content. J. Geophys. Res. Space Phys. 116, A2 (2011)
Li, X., Guo, D.: Modeling and prediction of ionospheric total electron content by time series analysis. In: Proc. 2nd Int. Conf. Adv. Comput. Control, pp. 375–379 (2010)
Li, S., Peng, J., Xu, W., Qin, K.: Time series modeling and analysis of trends of daily averaged ionospheric total electron content. Adv. Space Res. 52(5), 801–809 (2013)
Lin, M., Song, X., Qian, Q., Li, H., Sun, L., Zhu, S., Jin, R.: Robust Gaussian process regression for real-time high precision GPS signal enhancement. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2838–2847 (2019)
Nava, B., Coisson, P., Radicella, S.M.: A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phys. 70(15), 1856–1862 (2008)
Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)
Rasmussen, C.E., Williams, C.KI.: Gaussian processes for machine learning. In: Adaptive Computation and Machine Learning, vol. xviii, p. 48. MIT Press, Cambridge (2006)
Sun, A.Y., Wang, D., Xu, X.: Monthly streamflow forecasting using Gaussian process regression. J. Hydrol. 511, 72–81 (2014)
Taki, M., Rohani, A., Soheili-Fard, F., Abdeshahi, A.: Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. J. Clean. Prod. 172, 3028–3041 (2018)
Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., Atmos. 106, 7183–7192 (2001)
Tshisaphungo, M., Bosco Habarulema, J., Mckinnell, L.A.: Modeling ionospheric foF 2 response during geomagnetic storms using neural network and linear regression techniques. Adv. Space Res. 61(12), 2891–2903 (2018)
Tulunay, E., Senalp, E.T., Radicella, S.M., Tulunay, Y.: Forecasting total electron content maps by neural network technique. Radio Sci. 41, 4 (2006)
Wan, W., Ding, F., Ren, Z., Zhang, M., Liu, L., Ning, B.: Modeling the global ionospheric total electron content with empirical orthogonal function analysis. Sci. China, Technol. Sci. 55(5), 1161–1168 (2012)
Yuan, J., Wang, K., Yu, T., Fang, M.: Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int. J. Mach. Tools Manuf. 48(1), 47–60 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Inyurt, S., Hasanpour Kashani, M. & Sekertekin, A. Ionospheric TEC forecasting using Gaussian Process Regression (GPR) and Multiple Linear Regression (MLR) in Turkey. Astrophys Space Sci 365, 99 (2020). https://doi.org/10.1007/s10509-020-03817-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-020-03817-2
Keywords
- TEC
- Gaussian process regression
- Multiple linear regression
- Forecast