Kaluza-Klein dark energy model in Lyra manifold in the presence of massive scalar field

Abstract

In this investigation we intend to study the dynamics of an anisotropic dark energy cosmological model in the presence of a massive scalar field in a modified Riemannian manifold proposed by Lyra (Math. Z. 54:52, 1951) in the background of a five dimensional Kaluza-Klein space time. We solve the Einstein field equations using some physically significant conditions and present a deterministic dark energy cosmological model. We use here the time dependent displacement vector field of the Lyra manifold. All the dynamical parameters of the model, namely, average Hubble parameter, anisotropy parameter, equation of state parameter, dark energy density, deceleration parameter and statefinders are evaluated for our model and their physical relevance to modern cosmology is discussed in detail.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ade, P.A.R., et al.: Astron. Astrophys. 571, A16 (2014)

    Google Scholar 

  2. Aditya, Y., Reddy, D.R.K.: Astrophys. Space Sci. 363, 207 (2018a)

    ADS  Google Scholar 

  3. Aditya, Y., Reddy, D.R.K.: Eur. Phys. J. C 78, 619 (2018b)

    ADS  Google Scholar 

  4. Aditya, Y., Reddy, D.R.K.: Astrophys. Space Sci. 364, 3 (2019)

    ADS  Google Scholar 

  5. Aditya, Y., et al.: Astrophys. Space Sci. 361, 56 (2016)

    ADS  MathSciNet  Google Scholar 

  6. Appelquist, T., et al.: Modern Kaluza-Klein Theories. Addison-Wesley, Reading (1987)

    Google Scholar 

  7. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)

    ADS  MathSciNet  Google Scholar 

  8. Collins, C.B., et al.: Gen. Relativ. Gravit. 12, 805 (1980)

    ADS  Google Scholar 

  9. Copeland, E.J., et al.: Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  10. Gron, O.: Astron. Astrophys. 193, 1 (1988)

    ADS  MathSciNet  Google Scholar 

  11. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  12. Hinshaw, G.F., et al.: Astrophys. J. Suppl. Ser. 208, 19 (2013)

    ADS  Google Scholar 

  13. Jawad, A.: Astrophys. Space Sci. 353, 691 (2014)

    ADS  Google Scholar 

  14. Jawad, A.: Astrophys. Space Sci. 357, 19 (2015)

    ADS  Google Scholar 

  15. Johri, V.B., Desikan, K.: Gen. Relativ. Gravit. 26, 1217 (1994)

    ADS  Google Scholar 

  16. Johri, V.B., Sudharsan, R.: Aust. J. Phys. 42, 215 (1989)

    ADS  Google Scholar 

  17. Kaluza, T.: Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 1, 966 (1921)

    Google Scholar 

  18. Kantowski, R., Sachs, R.K.: J. Math. Phys. 7, 433 (1966)

    ADS  Google Scholar 

  19. Kiran, M., et al.: Astrophys. Space Sci. 354, 577 (2014)

    ADS  Google Scholar 

  20. Klein, O.: Z. Phys. 37, 895 (1926)

    ADS  Google Scholar 

  21. Kristian, J., Sachs, R.K.: Astrophys. J. 143, 379 (1966)

    ADS  MathSciNet  Google Scholar 

  22. Lyra, G.: Math. Z. 54, 52 (1951)

    MathSciNet  Google Scholar 

  23. Naidu, R.L.: Can. J. Phys. 97, 330 (2018)

    ADS  Google Scholar 

  24. Naidu, K.D., et al.: Astrophys. Space Sci. 363, 158 (2018a)

    Google Scholar 

  25. Naidu, K.D., et al.: Eur. Phys. J. Plus 133, 303 (2018b)

    Google Scholar 

  26. Naidu, R.L., et al.: Heliyon 5, 01645 (2019)

    Google Scholar 

  27. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

    ADS  Google Scholar 

  28. Nojiri, S., et al.: Phys. Rev. D 71, 123509 (2005)

    ADS  Google Scholar 

  29. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  30. Rao, V.U.M., et al.: Prespacetime J. 6, 596 (2015)

    Google Scholar 

  31. Rao, V.U.M., et al.: Results Phys. 10, 469 (2018)

    ADS  Google Scholar 

  32. Reddy, D.R.K., Aditya, Y.: Int. J. Phys.: Stud. Res. 1(1), 43 (2018)

    Google Scholar 

  33. Reddy, D.R.K., Lakshmi, G.V.V.: Astrophys. Space Sci. 354, 633 (2014)

    ADS  Google Scholar 

  34. Reddy, D.R.K., Ramesh, G.: Int. J. Cosml. Astron. Astrophys. 1, 67 (2019)

    Google Scholar 

  35. Reddy, D.R.K., et al.: Eur. Phys. J. Plus 129, 96 (2014)

    Google Scholar 

  36. Reddy, D.R.K., et al.: J. Dyn. Syst. Geom. Theories 17, 1 (2019)

    MathSciNet  Google Scholar 

  37. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  38. Saez, D., Ballester, V.J.: Phys. Lett. A 113, 467 (1986)

    ADS  Google Scholar 

  39. Sahni, V., et al.: JETP Lett. 77, 201 (2003)

    ADS  Google Scholar 

  40. Sahoo, P.K., et al.: Indian J. Phys. 94, 485 (2016)

    ADS  Google Scholar 

  41. Santhi, M.V., et al.: Afr. Rev. Phys. 11, 0029 (2016a)

    Google Scholar 

  42. Santhi, M.V., et al.: Can. J. Phys. 94, 578 (2016b)

    ADS  Google Scholar 

  43. Santhi, M.V., et al.: Can. J. Phys. 95, 136 (2017)

    ADS  Google Scholar 

  44. Sharma, U.K., Pradhan, A.: Mod. Phys. Lett. A 34, 1950101 (2019)

    ADS  Google Scholar 

  45. Singh, J.K.: Nuovo Cimento B 120, 1259 (2005)

    ADS  Google Scholar 

  46. Singh, C.P., Kumar, P.: Astrophys. Space Sci. 361, 157 (2016)

    ADS  Google Scholar 

  47. Singh, J.K., Rani, S.: Int. J. Theor. Phys. 54, 545 (2015)

    Google Scholar 

  48. Thorne, K.S.: Astrophys. J. 148, 51 (1967)

    ADS  Google Scholar 

  49. Wesson, P.S.: Astron. Astrophys. 119, 1 (1983)

    Google Scholar 

  50. Witten, E.: Phys. Lett. B 144, 351 (1984)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very much grateful to the reviewer for constructive comments which certainly improved the quality and presentation of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Aditya.

Ethics declarations

Compliance with ethical standards

The authors declare that they have no potential conflict and will abide by the ethical standards of this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aditya, Y., Raju, K.D., Rao, V.U.M. et al. Kaluza-Klein dark energy model in Lyra manifold in the presence of massive scalar field. Astrophys Space Sci 364, 190 (2019). https://doi.org/10.1007/s10509-019-3681-2

Download citation

Keywords

  • Kaluza-Klein model
  • DE model
  • Lyra manifold
  • Massive scalar meson field