Charged gravastars with conformal motion in \(f(R,T)\) gravity

Abstract

This paper studies the effects of charge on a peculiar stellar object, recognized as gravastar, under the influence of \(f(R,T)\) gravity by considering the conjecture of Mazur and Mottola in general relativity. The gravastar is also known as an alternative to a black hole and is expressed by three distinct domains named as (i) the interior domain, (ii) the intermediate shell and (iii) the exterior domain. We analyze these domains for a specific \(f(R,T)\) gravity model conceding the conformal Killing vectors. In the interior domain, we assume that pressure is equal to negative energy density which leads to the existence of repulsive force on the spherical shell. The intermediate shell consists of ultra-relativistic plasma and pressure which shows a direct relation with energy density and counterbalances the repulsive force applied by the interior domain. The exterior vacuum spherical domain is taken to be the de Sitter spacetime illustrated by the Reissner-Nordström metric. We conclude that non-singular solutions of charged gravastar with various physical properties such as length, energy, entropy and equation of state parameter are physically consistent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bilić, N., Tupper, G.B., Viollier, R.D.: J. Cosmol. Astropart. Phys. 02, 013 (2006)

    ADS  Google Scholar 

  2. Braje, T.M., Romani, R.W.: Astrophys. J. 580, 1043 (2002)

    ADS  Google Scholar 

  3. Broderick, A.E., Narayan, R.: Class. Quantum Gravity 24, 659 (2007)

    ADS  Google Scholar 

  4. Capozziello, S.: Int. J. Mod. Phys. D 483, 11 (2002)

    Google Scholar 

  5. Cardoso, V., et al.: Phys. Rev. D 77, 124044 (2008)

    ADS  Google Scholar 

  6. Carr, B.J.: Astrophys. J. 201, 1 (1975)

    ADS  Google Scholar 

  7. Carter, B.M.N.: Class. Quantum Gravity 22, 4551 (2005)

    ADS  Google Scholar 

  8. Cattoen, C., Faber, T., Visser, M.: Class. Quantum Gravity 22, 4189 (2005)

    ADS  Google Scholar 

  9. Chan, R., da Silva, M.F.A., da Rocha, J.F.V.: Gen. Relativ. Gravit. 41, 1835 (2009a)

    ADS  Google Scholar 

  10. Chan, R., da Silva, M.F.A., da Rocha, J.F.V.: Mod. Phys. Lett. A 24, 1137 (2009b)

    ADS  Google Scholar 

  11. Chapline, G., et al.: Int. J. Mod. Phys. A 18, 3587 (2003)

    ADS  Google Scholar 

  12. Chirenti, C.B.M.H., Rezzolla, L.: Class. Quantum Gravity 24, 4191 (2007)

    ADS  Google Scholar 

  13. Chirenti, C.B.M.H., Rezzolla, L.: Phys. Rev. D 78, 084011 (2008)

    ADS  Google Scholar 

  14. Das, A., et al.: Phys. Rev. D 95, 124011 (2017)

    ADS  MathSciNet  Google Scholar 

  15. de Bernardis, P., et al.: Nature 404, 955 (2000)

    ADS  Google Scholar 

  16. Deb, D., et al.: Phys. Rev. D 97, 084026 (2018a)

    ADS  MathSciNet  Google Scholar 

  17. Deb, D., et al.: J. Cosmol. Astropart. Phys. 03, 044 (2018b)

    ADS  Google Scholar 

  18. Haghani, Z., et al.: Phys. Rev. D 88, 044023 (2013)

    ADS  Google Scholar 

  19. Harko, T., Kovács, Z., Lobo, F.S.N.: Class. Quantum Gravity 26, 215006 (2009)

    ADS  Google Scholar 

  20. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  21. Horvat, D., Ilijić, S.: Class. Quantum Gravity 24, 5637 (2007)

    ADS  Google Scholar 

  22. Horvat, D., Ilijić, S., Marunovic, A.: Class. Quantum Gravity 26, 025003 (2009)

    ADS  Google Scholar 

  23. Houndjo, M.J.S.: Int. J. Mod. Phys. D 21, 1250003 (2012)

    ADS  MathSciNet  Google Scholar 

  24. Israel, W.: Nuovo Cimento B 44, 1 (1966)

    ADS  Google Scholar 

  25. Linares, L.P., Malheiro, M., Ray, S.: Int. J. Mod. Phys. D 13, 1355 (2004)

    ADS  Google Scholar 

  26. Lobo, F.S.N.: Class. Quantum Gravity 23, 1525 (2006)

    ADS  Google Scholar 

  27. Lobo, F.S.N., Arellano, A.V.B.: Class. Quantum Gravity 24, 1069 (2007)

    ADS  Google Scholar 

  28. Madsen, M.S., et al.: Phys. Rev. D 46, 1399 (1992)

    ADS  MathSciNet  Google Scholar 

  29. Mazur, P., Mottola, E.: Proc. Natl. Acad. Sci. USA 101, 9545 (2004)

    ADS  Google Scholar 

  30. Moraes, P.H.R.S.: Eur. Phys. J. C 75, 168 (2015)

    ADS  Google Scholar 

  31. Moraes, P.H.R.S., Arbañil, J.D.V., Malheiro, M.: J. Cosmol. Astropart. Phys. 06, 005 (2016)

    ADS  Google Scholar 

  32. Odintsov, S.D., Sáez-Gómes, D.: Phys. Lett. B 725, 437 (2013)

    ADS  MathSciNet  Google Scholar 

  33. Pani, P., et al.: Phys. Rev. D 80, 124047 (2009)

    ADS  Google Scholar 

  34. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, L5 (2003)

    Google Scholar 

  35. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  36. Rahaman, F., et al.: Int. J. Mod. Phys. D 23, 1450042 (2004)

    MathSciNet  Google Scholar 

  37. Ray, S., et al.: Indian J. Phys. 82, 1191 (2008)

    Google Scholar 

  38. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  39. Rocha, P., et al.: J. Cosmol. Astropart. Phys. 11, 010 (2008)

    ADS  Google Scholar 

  40. Shabani, H., Farhoudi, M.: Phys. Rev. D 88, 044048 (2013)

    ADS  Google Scholar 

  41. Shabani, H., Farhoudi, M.: Phys. Rev. D 90, 044031 (2014)

    ADS  Google Scholar 

  42. Shamir, F., Ahmad, M.: Phys. Rev. D 97, 104031 (2018)

    ADS  MathSciNet  Google Scholar 

  43. Sharif, M., Ikram, A.: Eur. Phys. J. C 76, 640 (2016)

    ADS  Google Scholar 

  44. Sharif, M., Nawazish, I.: Ann. Phys. 400, 37 (2019)

    ADS  Google Scholar 

  45. Sharif, M., Siddiqa, A.: Eur. Phys. J. Plus 132, 529 (2017)

    Google Scholar 

  46. Sharif, M., Siddiqa, A.: Int. J. Mod. Phys. D 27, 1850065 (2018)

    ADS  Google Scholar 

  47. Sharif, M., Siddiqa, A.: Adv. High Energy Phys. 2019, 8702795 (2019)

    Google Scholar 

  48. Sharif, M., Waseem, A.: Gen. Relativ. Gravit. 50, 78 (2018a)

    ADS  Google Scholar 

  49. Sharif, M., Waseem, A.: Eur. Phys. J. C 50, 78 (2018b)

    Google Scholar 

  50. Sharif, M., Waseem, A.: Int. J. Mod. Phys. D 28, 1950033 (2019)

    ADS  Google Scholar 

  51. Sharif, M., Zubair, M.: J. Cosmol. Astropart. Phys. 03, 028 (2012)

    ADS  Google Scholar 

  52. Sharif, M., Zubair, M.: J. Phys. Soc. Jpn. 82, 014002 (2013a)

    ADS  Google Scholar 

  53. Sharif, M., Zubair, M.: J. Phys. Soc. Jpn. 82, 064001 (2013b)

    ADS  Google Scholar 

  54. Sharif, M., Zubair, M.: Gen. Relativ. Gravit. 46, 1723 (2014)

    ADS  Google Scholar 

  55. Turimov, B.V., Ahmedov, B.J., Abdujabbarov, A.A.: Mod. Phys. Lett. A 24, 733 (2009)

    ADS  Google Scholar 

  56. Usmani, A.A., et al.: Phys. Lett. B 701, 388 (2011)

    ADS  Google Scholar 

  57. Visser, M., Wiltshire, D.L.: Class. Quantum Gravity 21, 1135 (2004)

    ADS  Google Scholar 

  58. Wesson, P.S.: J. Math. Phys. 19, 2283 (1978)

    ADS  Google Scholar 

  59. Zel’dovich, Y.B.: Mon. Not. R. Astron. Soc. 160, 1 (1972)

    ADS  Google Scholar 

  60. Zubair, M., et al.: Astrophys. Space Sci. 361, 238 (2016)

    ADS  Google Scholar 

Download references

Acknowledgement

We would like to thank the Higher Education Commission, Islamabad, Pakistan for its financial support through the Indigenous Ph.D. 5000 Fellowship Program Phase-II, Batch-III.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Waseem, A. Charged gravastars with conformal motion in \(f(R,T)\) gravity. Astrophys Space Sci 364, 189 (2019). https://doi.org/10.1007/s10509-019-3680-3

Download citation

Keywords

  • Gravastars
  • \(f(R,T)\) gravity
  • Conformal motion