Existence and stability of equilibrium points in the photogravitational restricted four-body problem with Stokes drag effect

Abstract

The restricted four-body problem consists of an infinitesimal particle which is moving under the Newtonian gravitational attraction of three finite bodies, \(m_{1}\), \(m_{2}\) and \(m_{3}\). The three bodies (called primaries) are moving in circular orbits around their common centre of mass fixed at the origin of the coordinate system. Moreover, according to the solution of Lagrange, these primaries are fixed at the vertices of an equilateral triangle. The fourth body does not affect the motion of the three bodies. In this paper, we deal with the photogravitational version of the problem with Stokes drag acting as a dissipative force. We consider the case where all the primaries are sources of radiation and that two of the bodies, \(m_{2}\) and \(m_{3}\), have equal masses (\(m _{2} = m_{3} = \mu \)) and equal radiation factors (\(q_{2} = q_{3} = q\)) while the dominant primary body \(m_{1}\) is of mass \(1 - 2\mu \). We investigate the dynamical behaviour of an infinitesimal mass in the gravitational field of radiating primaries coupled with the Stokes drag effect. It is found that under constant dissipative force, collinear equilibrium points do not exist (numerically and of course analytically) whereas the existence and positions of the non-collinear equilibrium points depend on the parameters values. The linear stability of the non-collinear equilibrium points (\(L_{i},i = 1,2, \ldots ,8\)) is also studied and it is found that they are all unstable except \(L_{1}\), \(L _{7}\) and \(L_{8}\) which may be stable for a range of values of \(\mu \) and various values of radiation factors. Finally, we justify the relevance of the model in astronomy by applying it to a stellar system (Ross 104-Ross775a-Ross775b), for which all the equilibrium points have been seen to be unstable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alvarez-Ramirez, M., Barrabes, E.: Transport orbits in an equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121(2), 191–210 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  2. Arribas, M., Abad, A., Elipe, A., Palacios, M.: Equilibria of the symmetric collinear restricted four-body problem with radiation pressure. Astrophys. Space Sci. 361, 84 (2016a)

    ADS  MathSciNet  Article  Google Scholar 

  3. Arribas, M., Abad, A., Elipe, A., Palacios, M.: Out-of-plane equilibria in the symmetric collinear restricted four-body problem with radiation pressure. Astrophys. Space Sci. 361, 210–280 (2016b). https://doi.org/10.1007/s10509-016-2858-1

    MathSciNet  Article  Google Scholar 

  4. Baguhl, M., Grün, E., Hamilton, D., Linkert, G., Riemanhh, R., Staubach, P.: The flux of interstellar dust observed by Ulysses and Galileo. Space Sci. Rev. 72, 471–476 (1995)

    ADS  Article  Google Scholar 

  5. Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21, 2179–2193 (2011)

    MathSciNet  Article  Google Scholar 

  6. Baltagiannis, A.N., Papadakis, K.E.: Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 (2013). https://doi.org/10.1016/j.pss.2012.11.006

    ADS  Article  Google Scholar 

  7. Barrabés, E., Cors, J.M., Vidal, C.: Spatial collinear restricted four-body problem with repulsive Manev potential. Celest. Mech. Dyn. Astron. (2017). https://doi.org/10.1007/s10569-017-9771-y

    MathSciNet  Article  MATH  Google Scholar 

  8. Beaugé, C., Ferraz-Mello, S.: Resonance trapping in the primordial solar nebula: the case of a Stokes drag dissipation. Icarus 103, 301–318 (1993)

    ADS  Article  Google Scholar 

  9. Bhatnagar, K.B., Chawla, J.M.: A study of the Lagrangian points in the photogravitational restricted three-body problem. Indian J. Pure Appl. Math. 10, 1443–1451 (1979)

    ADS  Google Scholar 

  10. Burns, J.A., Lamy, P.L., Soter, S.: Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979). https://doi.org/10.1016/0019-1035(79)90050-2

    ADS  Article  Google Scholar 

  11. Campo, P., Docobo, J.: Analytical study of a four-body configuration in exoplanet scenarios. Astron. Lett. 40, 737–748 (2014)

    ADS  Article  Google Scholar 

  12. Ceccaroni, M., Biggs, J.: Low-thrust propulsion in a coplanar circular restricted four body problem. Celest. Mech. Dyn. Astron. 112, 191–219 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  13. Celletti, A., Stefanelli, L., Lega, E., Froeschlé, C.: Some results on the global dynamics of the regularized restricted three-body problem with dissipation. Celest. Mech. Dyn. Astron. 109, 265–284 (2011). https://doi.org/10.1007/s10569-010-9326-y

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. Gascheau, M.: Examen d’une classe d’equations differentielles et applicationa un cas particulier du probleme des trois corps. Compt. Rend. 16, 393–394 (1843)

    Google Scholar 

  15. Ishwar, B., Elipe, A.: Secular solutions at triangular equilibrium point in the generalized photo-gravitational three body problem. Astrophys. Space Sci. 277, 437–446 (2001)

    ADS  Article  Google Scholar 

  16. Ishwar, B., Kushvah, B.S.: Linear stability of triangular equilibrium points in the generalized photogravitational restricted three body problem with Poynting–Robertson drag. J. Dyn. Syst. Geom. Theories 4, 79–86 (2006). arXiv:math/0602467

    MathSciNet  Article  Google Scholar 

  17. Jackson, A.A.: The capture of interstellar dust: the pure Poynting–Robertson case. Planet. Space Sci. 49, 417–424 (2001)

    ADS  Article  Google Scholar 

  18. Jain, M., Aggarwal, R.: Restricted three-body problem with Stokes drag effect. Int. J. Astron. Astrophys. 5, 95–105 (2015a). https://doi.org/10.4236/ijaa.2015.52013K

    Article  Google Scholar 

  19. Jain, M., Aggarwal, R.: A study of non-collinear libration points in restricted three body problem with Stokes drag effect when smaller primary is an oblate spheroid. Astrophys. Space Sci. 358, 51 (2015b). https://doi.org/10.1007/s10509-015-2457-6

    ADS  Article  Google Scholar 

  20. Kalvouridis, T.J., Arribas, M., Elipe, A.: The photo-gravitational restricted four-body problem: an exploration of its dynamical properties. In: Solomos, N. (ed.) Recent Advances in Astronomy and Astrophysics. American Institute of Physics Conference Series, vol. 848, pp. 637–646. Am. Inst. of Phys, New York (2006). https://doi.org/10.1063/1.2348041

    Google Scholar 

  21. Kalvouridis, T.J., Arribas, M., Elipe, A.: Parametric evolution of periodic orbits in the restricted four-body problem with radiation pressure. Planet. Space Sci. 55, 475–493 (2007). https://doi.org/10.1016/j.pss.2006.07.005

    ADS  Article  Google Scholar 

  22. Kumari, R., Kushvah, B.S.: Equilibrium points and zero velocity surfaces in the restricted four-body problem with solar wind drag. Astrophys. Space Sci. 344, 347–359 (2013)

    ADS  Article  Google Scholar 

  23. Luk’yanov, L.G.: Stability of coplanar libration points in the restricted photo-gravitational three-body problem. Sov. Astron. 31(6), 677–681 (1987)

    ADS  MATH  Google Scholar 

  24. Luk’yanov, L.G.: Zero-velocity surfaces in the restricted, photogravitational three-body problem. Sov. Astron. 32, 215–220 (1988)

    ADS  Google Scholar 

  25. Manju, K., Choudhry, R.K.: On the stability of triangular libration points taking into account the light pressure for the circular restricted problem of three bodies. Celest. Mech. Dyn. Astron. 36, 165–190 (1985)

    MathSciNet  Article  Google Scholar 

  26. Marchand, B.G., Howell, K.C., Wilson, R.S.: Improved corrections process for constrained trajectory design in the n-body problem. J. Spacecr. Rockets 44, 884–897 (2007)

    ADS  Article  Google Scholar 

  27. Meyer, K., Hall, G., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, vol. 90. Springer, Berlin (2008)

    Google Scholar 

  28. Murray, C.D.: Dynamical effects of drag in the circular restricted three-body problem. Icarus 122, 465–484 (1994)

    ADS  Article  Google Scholar 

  29. Murray, C., Dermott, S.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  30. Papadakis, K.E.: Families of periodic orbits in the photogravitational three body problem. Astrophys. Space Sci. 245, 1–13 (1996)

    ADS  Article  Google Scholar 

  31. Papadouris, J.P., Papadakis, K.E.: Equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 344, 21–38 (2013)

    ADS  Article  Google Scholar 

  32. Papadouris, J.P., Papadakis, K.E.: Periodic solutions in the photogravitational restricted four body problem. Mon. Not. R. Astron. Soc. 442, 1628–1639 (2014)

    ADS  Article  Google Scholar 

  33. Radzievskii, V.V.: The photogravitational restricted problems of three-bodies. Astron. J. 27, 250–256 (1950). (USSR)

    Google Scholar 

  34. Radzievskii, V.V.: The photogravitational restricted problems of three-bodies and coplanar solutions. Astron. J. 30, 265–269 (1953). (USSR)

    Google Scholar 

  35. Ragos, O., Zafiropoulos, F.A.: A numerical study of the influence of the Poynting-Robertson effect on the equilibrium points of the photo-gravitational restricted three-body problem. Astron. Astrophys. 300, 568–578 (1995)

    ADS  Google Scholar 

  36. Ragos, O., Zagouras, C.: The zero velocity surfaces in the photogravitational restricted three-body problem. Earth Moon Planets 41, 257–278 (1988)

    ADS  Article  Google Scholar 

  37. Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. Mon. Not. R. Astron. Soc. 372, 1463–1482 (2006)

    ADS  Article  Google Scholar 

  38. Schuerman, D.W.: The restricted three-body problem including radiation pressure. Astrophys. J. 238, 337–342 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  39. Schwarz, R., Süli, À., Dvorac, R., Pilat-Lohinger, E.: Stability of Trojan planets in multi-planetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009a)

    ADS  Article  Google Scholar 

  40. Schwarz, R., Süli, À., Dvorac, R.: Dynamics of possible Trojan planets in binary systems. Mon. Not. R. Astron. Soc. 398, 2085–2090 (2009b)

    ADS  Article  Google Scholar 

  41. Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145–187 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  42. Singh, J., Omale, S.O.: Combined effect of Stokes drag, oblateness and radiation pressure on the existence and stability of equilibrium points in the restricted four-body problem. Astrophys. Space Sci. 364, 6 (2019). https://doi.org/10.1007/s10509-019-3494-3

    ADS  MathSciNet  Article  Google Scholar 

  43. Singh, J., Vincent, A.E.: Out-of-plane equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 359, 38 (2015). https://doi.org/10.1007/s10509-015-2487-015-0

    ADS  Article  Google Scholar 

  44. Singh, J., Vincent, A.E.: Equilibrium points in the restricted four-body problem with radiation pressure. Few-Body Syst. 57, 83–91 (2016)

    ADS  Article  Google Scholar 

  45. Singh, J., Vincent, E.A.: Combined effects of radiation and oblateness on the existence and stability of equilibrium points in the perturbed restricted four-body problem. Int. J. Space Sci. Eng. 4, 174–205 (2017)

    ADS  Article  Google Scholar 

  46. Suraj, M.S., Hassan, M.R.: Sitnikov restricted four-body problem with radiation pressure. Astrophys. Space Sci. 349, 705–716 (2014)

    ADS  Article  Google Scholar 

  47. Xuetang, Z., Lizhong, Y.: Photogravitationally restricted three-body problem and coplanar libration point. Chin. Phys. Lett. 10(1), 61 (1993)

    MathSciNet  Article  Google Scholar 

  48. Yamada, K., Tsuchiya, T.: The linear stability of the post-Newtonian triangular equilibrium in the three-body problem. Celest. Mech. Dyn. Astron. 129, 487–507 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  49. Zotos, E.E.: Escape and collision dynamics in the planar equilateral restricted four-body problem. Int. J. Non-Linear Mech. 86, 66–82 (2016)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the two anonymous reviewers, whose comments and suggestions have been very useful in improving the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joel John Taura.

Ethics declarations

Funding

The authors state that they have not received any research grants.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vincent, A.E., Taura, J.J. & Omale, S.O. Existence and stability of equilibrium points in the photogravitational restricted four-body problem with Stokes drag effect. Astrophys Space Sci 364, 183 (2019). https://doi.org/10.1007/s10509-019-3674-1

Download citation

Keywords

  • Restricted four body problem
  • Radiation pressure
  • Stokes drag
  • Equilibria
  • Stellar system
  • Stability