Skip to main content
Log in

Dynamic patterns of self-organization inflow in collisionless magnetic reconnection

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We investigate the evolution of reconnection inflow using a fully kinetic approach. Three types of inflow are detailed, namely the collapse inflow, the vortex inflow and the reverse inflow. They are formed dynamically at different stages of reconnection via self-organizing processes, but are closely interrelated with each other. The reconnection starts from a small perturbation, which can trigger off a chain of pressure-induced collapses propagating into the inflow region. The pressure gradient results in the collapse inflow toward the reconnection site. Then due to the continuous injection of hot plasma carried by the reconnection outflows, the expanding exhaust causes its adjacent region to be compressed. The combined effects of the compression and the reflection of conducting walls lead to the formation of the vortex inflow. Subsequently, the reverse inflow develops gradually within the exhaust. Under the modulation of these inflows, the reconnection rate shows a transient oscillation. We also discussed the possible occurrence of the self-organization inflow available in different contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelopoulos, V., McFadden, J.P., Larson, D., Carlson, C.W., Mende, S.B., Frey, H., Phan, T., Sibeck, D.G., Glassmeier, K.-H., Auster, U., Donovan, E., Mann, I.R., Rae, I.J., Russell, C.T., Runov, A., Zhou, X.-Z., Kepko, L.: Tail reconnection triggering substorm onset. Science 321, 931 (2008)

    Article  ADS  Google Scholar 

  • Beidler, M.T., Cassak, P.A.: Model for incomplete reconnection in sawtooth crashes. Phys. Rev. Lett. 107, 255002 (2011)

    Article  ADS  Google Scholar 

  • Birn, J., Drake, J.F., Shay, M.A., Rogers, B.N., Denton, R.E., Hesse, M., Kuznetsova, M., Ma, Z.W., Bhattacharjee, A., Otto, A., Pritchett, P.L.: Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715 (2001)

    Article  ADS  Google Scholar 

  • Cai, H.J., Lee, L.C.: The generalized Ohm’s law in collisionless magnetic reconnection. Phys. Plasmas 4, 509 (1997)

    Article  ADS  Google Scholar 

  • Chandra, M., Verma, M.K.: Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110, 114503 (2013)

    Article  ADS  Google Scholar 

  • Daughton, W.: Kinetic theory of the drift kink instability in a current sheet. J. Geophys. Res. 103, 29429 (1998)

    Article  ADS  Google Scholar 

  • Daughton, W., Lapenta, G., Ricci, P.: Nonlinear evolution of the lower-hybrid drift instability in a current sheet. Phys. Rev. Lett. 93, 105004 (2004)

    Article  ADS  Google Scholar 

  • Daughton, W., Scudder, J., Karimabadi, H.: Fully kinetic simulations of undriven magnetic reconnection with open boundary conditons. Phys. Plasmas 13, 072101 (2006)

    Article  ADS  Google Scholar 

  • Egedal, J., Fox, W., Katz, N., Porkolab, M., Reim, K., Zhang, E.: Laboratory observations of spontaneous magnetic reconnection. Phys. Rev. Lett. 98, 015003 (2007)

    Article  ADS  Google Scholar 

  • Esirkepov, T.Z.: Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135, 144 (2001)

    Article  ADS  Google Scholar 

  • Fujimoto, K.: Time evolution of the electron diffusion region and the reconnection rate in fully kinetic and large system. Phys. Plasmas 13, 072904 (2006)

    Article  ADS  Google Scholar 

  • Jin, S.P., Yang, H.A., Wang, X.G.: Hall effect and fine structures in magnetic reconnection with high plasma \(\beta \). Phys. Plasmas 12, 042902 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115 (1962)

    Article  Google Scholar 

  • Hasegawa, H., Wang, J., Dunlop, M.W., Pu, Z.Y., Zhang, Q.-H., Lavraud, B., Taylor, M.G.G.T., Constantinescu, O.D., Berchem, J., Angelopoulos, V., McFadden, J.P., Frey, H.U., Panov, E.V., Volwerk, M., Bogdanova, Y.V.: Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause. Geophys. Res. Lett. 37, L16101 (2010)

    Article  ADS  Google Scholar 

  • Hoshino, M.: The electrostatic effect for the collisionless tearing mode. J. Geophys. Res. 92, 7368 (1987)

    Article  ADS  Google Scholar 

  • Huang, Y.-M., Bhattacharjee, A., Sullivan, B.P.: Onset of fast reconnection in Hall magnetohydrodynamics mediated by the plasmoid instability. Phys. Plasmas 18, 072109 (2011)

    Article  ADS  Google Scholar 

  • Karimabadi, H., Dorelli, J., Roytershteyn, V., Daughton, W., Chacón, L.: Flux pileup in collisionless magnetic reconnection: bursty interaction of large flux ropes. Phys. Rev. Lett. 107, 025002 (2011)

    Article  ADS  Google Scholar 

  • Lapenta, G.: Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys. Rev. Lett. 100, 235001 (2008)

    Article  ADS  Google Scholar 

  • Liu, C., Feng, X., Guo, J., Ye, Y.: Study of small-scale plasmoid structures in the magnetotail using Cluster observations and Hall MHD simulations. J. Geophys. Res. 118, 2087 (2013)

    Article  Google Scholar 

  • Liu, C., Feng, X., Nakamura, R., Guo, J., Wang, R.: Double-peaked core field of flux ropes during magnetic reconnection. J. Geophys. Res. 122, 6374 (2017a)

    Article  Google Scholar 

  • Liu, Y.-H., Hesse, M., Guo, F., Daughton, W., Li, H., Cassak, P.A., Shay, M.A.: Why does steady-state magnetic reconnection have a maximum local rate of order 0.1? Phys. Rev. Lett. 118, 085101 (2017b)

    Article  ADS  Google Scholar 

  • Lu, Q., Lu, S., Huang, C., Wu, M., Wang, S.: Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection. Plasma Phys. Control. Fusion 55, 085019 (2013)

    Article  ADS  Google Scholar 

  • Ma, Z.W., Bhattacharjee, A.: Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge. J. Geophys. Res. 106, 3773 (2001)

    Article  ADS  Google Scholar 

  • Matthaeus, W.H.: Reconnection in two dimensions: localization of vorticity and current near magnetic X-points. Geophys. Res. Lett. 9, 660 (1982)

    Article  ADS  Google Scholar 

  • Mandt, M.E., Denton, R.E., Drake, J.F.: Transition to whistler mediated magentic reconnection. Geophys. Res. Lett. 21, 73 (1994)

    Article  ADS  Google Scholar 

  • Øieroset, M., Phan, T.D., Fujimoto, M., Lin, R.P., Lepping, R.P.: In situ detection of collisionles reconnection in the Earth’s magnetotail. Nature 412, 414 (2001)

    Article  ADS  Google Scholar 

  • Øieroset, M., Phan, T.D., Eastwood, J.P., Fujimoto, M., Daughton, W., Shay, M.A., Angelopoulos, V., Mozer, F.S., McFadden, J.P., Larson, D.E., Glassmeier, K.-H.: Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection X lines at Earth’s magnetopause. Phys. Rev. Lett. 107, 165007 (2011)

    Article  ADS  Google Scholar 

  • Shay, M.A., Drake, J.F.: The role of electron dissipation on the rate of collisionless magnetic reconnection. Geophys. Res. Lett. 25, 3759 (1998)

    Article  ADS  Google Scholar 

  • Treumann, R.A., Nakamura, R., Baumjohann, W.: Collisionless reconnection: mechanism of self-ignition in thin plane homogeneous current sheets. Ann. Geophys. 28, 1935 (2010)

    Article  ADS  Google Scholar 

  • Ugai, M.: Self-consistent development of fast magnetic reconnection with anomalous plasma resistivity. Plasma Phys. Control. Fusion 26, 1549 (1984)

    Article  ADS  Google Scholar 

  • Vasyliunas, V.M.: Theoretical models of magnetic field line merging. Rev. Geophys. 13, 303 (1975)

    Article  ADS  Google Scholar 

  • Wan, W., Lapenta, G.: Electron self-reinforcing process of magnetic reconnection. Phys. Rev. Lett. 101, 015001 (2008)

    Article  ADS  Google Scholar 

  • Wang, R., Lu, Q., Nakamura, R., Huang, C., Du, A., Guo, F., Teh, W., Wu, M., Lu, S., Wang, S.: Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys. 12, 263 (2016)

    Article  Google Scholar 

  • Yang, H.A., Jin, S.P., Zhou, G.C.: Density depletion and Hall effect in magnetic reconnection. J. Geophys. Res. 111, A11223 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants 41231068, 41531073, 41204127 and 61872047), and the Specialized Research Fund for State Key Laboratories. We acknowledge the use of computer resources at National Space Science Center, CAS. The software used in this work in part developed in pCANS at Chiba University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoxu Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Feng, X., Wan, M. et al. Dynamic patterns of self-organization inflow in collisionless magnetic reconnection. Astrophys Space Sci 364, 127 (2019). https://doi.org/10.1007/s10509-019-3619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-019-3619-8

Keywords

Navigation