Southern Martian winter weather associated with baroclinic topography forced Rossby waves: analysing by Global Mars Multiscale Model

  • Farahnaz Fazel-RastgarEmail author
Original Article


Meteorological and physical results from the Global Mars Multiscale Model (GM3) are used for investigating the impact of zonally asymmetric topography on atmospheric temperature and wind structures of Martian southern winter weather associated with the forced topographical Rossby waves. Analysis of the numerical simulations reveals significant thermal and wind patterns at the southern mid and high latitudes during southern winter due to the impact of asymmetric topography. This study shows the presence of warm air advection at southern high latitudes mostly around the cryptic regions controls by a warm ridge and the cold air advection at mid-latitudes is around the Hellas and Argyre basins associated with two cold troughs. Also, there is large temperature advection fluctuation around \(50^{\circ}\mbox{S}\) causing by topographical aspects of Hellas and Argyre basins rather than flat topography simulation. This is associated with the baroclinicity structure causing by topography in Martian mid-latitudes. This can act to moderate the temperature field in the Martian southern hemisphere weather during wintertime because of the wind pattern structures. Also, the winter time south zonal westerly jet stream analysis shows the development of disturbances structure (meandering) in the north side of the jet dependent of longitudinal structure of Martian southern topography with a wave-like pattern below the Hellas and Argyre basins. Also, the vertical structure of the zonal wind shows the appearance of a vertical wind shear around \(78^{\circ}\mbox{S}\) with smoothly tilting to the higher altitudes associated with the baroclinic structure of the southern Martian winter weather associated with the baroclinic forced topography Rossby waves.


Mars Southern winter weather Hellas and Argyre basins Topography Rossby waves 



Sincere gratitude is given to Prof. Jack McConnell (deceased) for initiating this work. Great and special thanks to Prof. Peter Taylor. Thanks to Dr. Deji Akingunola and Dr. Kirill Semeniuk in keeping vital access to the computing facilities needed to run GM3 during this work. Also, thanks to York University, Canada and NSERC, Canada for financial support at various stages of the research.

Compliance with ethical standards

This work does not involve author conflicts of interest.

This work does not involve Human participants and/or Animal.


  1. Akingunola, A.: Martian water cycle modeling with the second generation of the Global Mars Multiscale Model. York University (Canada), ProQuest Dissertations Publishing (2009). NR51665 Google Scholar
  2. Banfield, D., Conrath, B., Smith, M., Christensen, P., Wilson, R.: Forced waves in the martian atmosphere from MGS TES nadir data. Icarus 161(2), 319–345 (2003). ADSCrossRefGoogle Scholar
  3. Colaprete, A., Barnes, J.R., Haberle, R.M., Hollingsworth, J.L., Kieffer, H.H., Titus, T.N.: Albedo of the south pole determined by topographic forcing of atmosphere dynamics. Nature 435, 184–188 (2005) ADSCrossRefGoogle Scholar
  4. Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., Staniforth, A.: The operational CMC-MRB Global Environmental Multiscale (GEM) model: Part I—Design considerations and formulation. Mon. Weather Rev. 126, 1337–1395 (1998) ADSCrossRefGoogle Scholar
  5. Dequaire, J.M., et al.: Abstract of “5th International Workshop on the Mars Atmosphere: Modelling and Observations” (2014).
  6. Ditlevsen, P.D.: A note on 1-dimensional calculations of baroclinic and barotropic instabilities. Tellus, Ser. A Dyn. Meteorol. Oceanogr. 49(3), 337–346 (1997). CrossRefGoogle Scholar
  7. Fazel-Rastgar, F.: The impact of topography and albedo on weather patterns and the location of the Martian south polar CO2 ice cap. Ph.D. thesis, York University (2013) Google Scholar
  8. Fazel-Rastgar, F.: South polar permanent CO2 ice cap presentation in the Global Mars Multiscale Model. Adv. Space Res. 61(4), 1170–1180 (2018). ADSCrossRefGoogle Scholar
  9. Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al.: Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., Planets 104(E10), 24155–24175 (1999). ADSCrossRefGoogle Scholar
  10. Giuranna, M., Grassi, D., Formisano, V., Montabone, L., Forget, F., Zasova, L.: PFS/MEX observations of the condensing CO2 south polar cap of Mars. Icarus 197(2), 386–402 (2008). ADSCrossRefGoogle Scholar
  11. Hinson, D.P., Wilson, R.J.: Transient eddies in the southern hemisphere of Mars. Geophys. Res. Lett. 29(7), 1154 (2002). ADSCrossRefGoogle Scholar
  12. Hollingsworth, J.L., Barnes, J.R.: Forced stationary planetary waves in Mars’s winter atmosphere. J. Atmos. Sci. 53(3), 428–448 (1996) ADSCrossRefGoogle Scholar
  13. Holton, J.: An Introduction to Dynamic Meteorology, 3rd edn. Academic Press, San Diego (1992). Google Scholar
  14. Kieffer, H.H., Titus, T.N., Mullins, K.F., Christensen, P.R.: Mars south polar spring and summer behavior observed by TES: seasonal cap evaluation controlled by frost grain size. J. Geophys. Res. 105, 9653–9700 (2000) ADSCrossRefGoogle Scholar
  15. Langevin, Y., Douté, S., Vincendon, M., Poulet, F., Bibring, J., Gondet, B., et al.: No signature of clear CO2 ice from the ‘cryptic’ regions in Mars’ south seasonal polar cap. Nature 442(7104), 790–792 (2006). ADSCrossRefGoogle Scholar
  16. Leonard, G.J., Tanaka, K.L.: Geologic map of the Hellas region of Mars: U.S. Geological Survey Geologic Investigations Series I-2694, pamphlet 10 p., 1 plate, scale 1:4,336,000 (2001). Available at
  17. Leovy, C.B.: Weather and climate on Mars. Nature 412, 245–249 (2001) ADSCrossRefGoogle Scholar
  18. Moudden, Y., McConnell, J.C.: A new model for multiscale modeling of the Martian atmosphere, GM3. J. Geophys. Res. 110(E04001), 1–13 (2005). CrossRefGoogle Scholar
  19. Moudden, Y., McConnell, J.C., Beagley, S.R., Lopez-Valverde, M.A., Lopez Puertas, M.: Meteorological results from the Global Mars Multiscale Model at the Viking 1 Lander site. Adv. Space Res. 36(11), 2169–2175 (2005) ADSCrossRefGoogle Scholar
  20. Piqueux, S., Byrne, S., Richadrson, M.I.: Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders. J. Geophys. Res. 108, 1–9 (2003) CrossRefGoogle Scholar
  21. Plescia, J.B.: Morphometric properties of Martian volcanoes. J. Geophys. Res. 109, E03003 (2004). ADSCrossRefGoogle Scholar
  22. Pottier, A., Forget, F., Montmessin, F., Navarro, T., Spiga, A., Millour, E., et al.: Unraveling the martian water cycle with high-resolution global climate simulations. Icarus 291, 82–106 (2017). ADSCrossRefGoogle Scholar
  23. Showman, A.P., Wordsworth, R.D., Merlis, T.M., Kaspi, Y.: Atmospheric circulation of terrestrial exoplanets. In: Comparative Climatology of Terrestrial Planets (2013). CrossRefGoogle Scholar
  24. Smith, D.E., Zuber, M.T., Solomon, S.C., Phillips, R.J., Head, J.W., Garvin, J.B., et al.: The global topography of Mars and implications for surface evolution. Science 284(5419), 1495–1503 (1999). ADSCrossRefGoogle Scholar
  25. Thomas, P., Veverka, J., Campos-Marquetti, R.: Frost streaks in the south polar cap of Mars. J. Geophys. Res. 84(B9), 4621–4633 (1979). ADSCrossRefGoogle Scholar
  26. Wang, H., Ingersoll, A.P.: Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera. J. Geophys. Res. 107(E10), 5078 (2002). CrossRefGoogle Scholar
  27. Zalucha, A.M., Plumb, R.A., Wilson, R.J.: An analysis of the effect of topography on the Martian Hadley cells. J. Atmos. Sci. 67(3), 673–693 (2010). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for Research in Earth and Space Science and Department of GeographyYork UniversityTorontoCanada

Personalised recommendations