Skip to main content
Log in

Constraints on the equation of state from the stability condition of neutron stars

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The stellar equilibrium and collapse, including mainly white dwarfs, neutron stars and super massive stars, is an interplay between general relativistic effects and the equation of state of nuclear matter. In the present work, we use the Chandrasekhar criterion of stellar instability by employing a large number of realistic equations of state (EoSs) of neutron star matter. We mainly focus on the critical point of transition from stable to unstable configuration. This point corresponds to the maximum neutron star mass configuration. We calculate, in each case, the resulting compactness parameter, \(\beta =GM/c^{2}R\), and the corresponding effective adiabatic index, \(\gamma _{\mathrm{cr}}\). We find that there is a model-independent relation between \(\gamma _{ \mathrm{cr}}\) and \(\beta \). This statement is strongly supported by the large number of EoSs, and it is also corroborated by using analytical solutions of the Einstein field equations. In addition, we present and discuss the relation between the maximum rotation rate and the adiabatic index close to the instability limit. Accurate observational measurements of the upper bound of the neutron star mass and the corresponding radius, in correlation with present predictions, may help to impose constraints on the high density part of the neutron star equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott, B.P., et al.: Phys. Rev. Lett. 119, 161101 (2017a)

    Article  ADS  Google Scholar 

  • Abbott, B.P., et al.: Astrophys. J. 12, 848 (2017b)

    Google Scholar 

  • Akmal, A., Pandharipande, V.R., Ravenhall, D.G.: Phys. Rev. C 58, 1804 (1998)

    ADS  Google Scholar 

  • Alsing, J., Silva, H.O., Berti, E.: Mon. Not. R. Astron. Soc. 478, 1377 (2018)

    ADS  Google Scholar 

  • Antoniadis, J., Freire, P.C., Wex, N., Tauris, T.M., Lynch, R.S., et al.: Science 340, 1233232 (2013)

    Google Scholar 

  • Balberg, S., Shapiro, S.L.:. astro-ph/0004317 (2000)

  • Bardeen, J.M., Thorne, K.S., Meltzer, D.W.: Astrophys. J. 145, 505 (1966)

    ADS  Google Scholar 

  • Bauswein, A., Just, O., Janka, H.T., Stergioulas, N.: Astrophys. J. Lett. 850, L34 (2017)

    ADS  Google Scholar 

  • Bludman, S.A.: Astrophys. J. 183, 637 (1973a)

    ADS  Google Scholar 

  • Bludman, S.A.: Astrophys. J. 183, 649 (1973b)

    ADS  Google Scholar 

  • Bombaci, I., Logoteta, D.: Astron. Astrophys. 609, A128 (2018)

    ADS  Google Scholar 

  • Bourke, T.L., et al.: In: Proceedings of Science, Advancing Astrophysics with the Square Kilometre Array (AASKA14). SISSA, Trieste (2015). http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=215

    Google Scholar 

  • Bowers, R.L., Gleeson, A.M., Pedigo, R.D.: Phys. Rev. D 12, 3056 (1975)

    ADS  Google Scholar 

  • Breu, C., Rezzolla, L.: Mon. Not. R. Astron. Soc. 459, 646 (2016)

    ADS  Google Scholar 

  • Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)

    ADS  MathSciNet  Google Scholar 

  • Buchdahl, H.A.: Astrophys. J. 147, 310 (1967)

    ADS  Google Scholar 

  • Chabanat, E., Bonche, P., Haensel, P., Meyer, J., Schaeffer, R.: Nucl. Phys. A 627, 710 (1997)

    ADS  Google Scholar 

  • Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 267, 637 (1994)

    ADS  Google Scholar 

  • Chandrasekhar, S.: Astrophys. J. 140, 417 (1964a)

    ADS  MathSciNet  Google Scholar 

  • Chandrasekhar, S.: Phys. Rev. Lett. 12, 114 (1964b)

    ADS  Google Scholar 

  • Chen, W.C., Piekarewicz, J.: Phys. Rev. Lett. 115, 161101 (2015)

    ADS  Google Scholar 

  • Demorest, P., Pennucci, T., Ransom, S., Roberts, M., Hessels, J.: Nature (London) 467, 1081 (2010)

    ADS  Google Scholar 

  • Douchin, F., Haensel, P.: Astron. Astrophys. 380, 151 (2001)

    ADS  Google Scholar 

  • Farine, M., Pearson, J.M., Tondeur, F.: Nucl. Phys. A 615, 135 (1997)

    ADS  Google Scholar 

  • Friedman, J.L., Stergioulas, N.: Rotating Relativistic Stars. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  • Gaertig, E., Kokkotas, K.D.: Phys. Rev. D 80, 064026 (2009)

    ADS  Google Scholar 

  • Gaitanos, T., Kaskulov, M.: Nucl. Phys. A 899, 133 (2013)

    ADS  Google Scholar 

  • Gaitanos, T., Kaskulov, M.: Nucl. Phys. A 940, 181 (2015)

    ADS  Google Scholar 

  • Glass, E.N., Harpaz, A.: Mon. Not. R. Astron. Soc. 202, 159 (1983)

    ADS  Google Scholar 

  • Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity. Springer, Berlin (2000)

    MATH  Google Scholar 

  • Haensel, P., Lasota, J.P., Zdunik, J.L.: Astron. Astrophys. 344, 151 (1999)

    ADS  Google Scholar 

  • Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron Stars 1: Equation of State and Structure. Springer, New York (2007)

    Google Scholar 

  • Haensel, P., Bejger, M., Fortin, M., Zdunic, L.: Eur. Phys. J. A 52, 59 (2016)

    ADS  Google Scholar 

  • Hambaryan, V., Suleimanov, V., Haberl, F., Schwope, A.D., Neuhauser, R., Hohle, M., Werner, K.: Astron. Astrophys. 601, A108 (2017)

    ADS  Google Scholar 

  • Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitational Theory and Gravitational Collapse. Chigago University Press, Chigago (1965)

    Google Scholar 

  • Hebeler, K., Lattimer, J.M., Pethick, C.J., Schwenk, A.: Astrophys. J. 773, 11 (2013)

    ADS  Google Scholar 

  • Heiselberg, H., Hjorth-Jensen, M.: Phys. Rep. 328, 237 (2000)

    ADS  Google Scholar 

  • Herrera, L., Le Denmat, G., Santos, N.O.: Mon. Not. R. Astron. Soc. 237, 257 (1989)

    ADS  Google Scholar 

  • Hessels, J.W.T., Ransom, S.M., Stairs, I.H., et al.: Science 311, 1901 (2006)

    ADS  Google Scholar 

  • Hiscock, W.A., Lindblom, L.: Ann. Phys. 151, 466 (1983)

    ADS  Google Scholar 

  • Ipser, J.R.: Astrophys. Space Sci. 7, 361 (1970)

    ADS  Google Scholar 

  • Kokkotas, K.D., Ruoff, J.: Astron. Astrophys. 366, 565 (2001)

    ADS  Google Scholar 

  • Lasota, J.P., Haensel, P., Abramowicz, M.A.: Astrophys. J. 456, 300 (1996)

    ADS  Google Scholar 

  • Lattimer, J.M., Prakash, M.: Astrophys. J. 550, 426 (2001)

    ADS  Google Scholar 

  • Lattimer, J.M., Prakash, M.: Phys. Rev. Lett. 94, 111101 (2005)

    ADS  Google Scholar 

  • Lindblom, L., Detweiler, S.L.: Astrophys. J. Suppl. Ser. 53, 73 (1983)

    ADS  Google Scholar 

  • Madappa, P., Bombaci, I., Manju, P., Ellis, P.J., Lattimer, J.M., Knorren, R.: Phys. Rep. 280, 1 (1997)

    ADS  Google Scholar 

  • Margalit, B., Metzger, B.D.: Astrophys. J. Lett. 850, L19 (2017)

    ADS  Google Scholar 

  • Maselli, A., Pnigouras, P., Nielsen, N.G., Kouvaris, C., Kokkotas, K.D.: Phys. Rev. D 96, 023005 (2017)

    ADS  Google Scholar 

  • Merafina, M., Ruffini, R.: Astron. Astrophys. 221, 4 (1989)

    ADS  Google Scholar 

  • Miller, M.C., Lamb, F.K.: Astrophys. J. Lett. 499, L37 (1998)

    ADS  Google Scholar 

  • Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  • Moustakidis, Ch.C., Panos, C.P.: Phys. Rev. C 79, 045806 (2009)

    ADS  Google Scholar 

  • Moustakidis, Ch.C.: Gen. Relativ. Gravit. 49, 68 (2017)

    ADS  MathSciNet  Google Scholar 

  • Nariai, H.: Sci. Rep. Tohoku Univ. Ser. 1(34), 160 (1950)

    ADS  MathSciNet  Google Scholar 

  • Nariai, H.: Sci. Rep. Tohoku Univ. Ser. 1(35), 62 (1951)

    MathSciNet  Google Scholar 

  • Nariai, H.: Gen. Relativ. Gravit. 31, 951 (1999)

    ADS  MathSciNet  Google Scholar 

  • Negi, P.S., Durgapal, M.C.: Gen. Relativ. Gravit. 31, 13 (1999)

    ADS  Google Scholar 

  • Negi, P.S., Durgapal, M.C.: Astrophys. Space Sci. 275, 185 (2001)

    ADS  Google Scholar 

  • Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939)

    ADS  Google Scholar 

  • Pandharipande, V.R., Smit, R.A.: Phys. Lett. B 59, 15 (1975)

    ADS  Google Scholar 

  • Papazoglou, M.C., Moustakidis, Ch.C.: Astrophys. Space Sci. 361, 98 (2016)

    ADS  Google Scholar 

  • Raghoonundun, A.M., Hobill, D.W.: Phys. Rev. D 92, 124005 (2015)

    ADS  Google Scholar 

  • Rosso, A.G., Vissani, F., Volpe, M.C.: J. Cosmol. Astron. Phys. 36 (2017)

  • Ravenhall, D.G., Pethick, C.J.: Astrophys. J. 424, 846 (1994)

    ADS  Google Scholar 

  • Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  • Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars. Wiley, New York (1983)

    Google Scholar 

  • Sharif, M., Yousaf, Z.: Astrophys. Space Sci. 355, 317 (2015)

    ADS  Google Scholar 

  • Sharma, B.K., Centelles, M., Vinas, X., Baldo, M., Burgio, G.F.: Astron. Astrophys. 584, A103 (2015)

    ADS  Google Scholar 

  • Silva, H.O., Sotani, H., Berti, E.: Mon. Not. R. Astron. Soc. 459, 4378 (2016)

    ADS  Google Scholar 

  • Silva, H.O., Yunes, N.: Class. Quantum Gravity 35, 015005 (2018)

    ADS  Google Scholar 

  • Sotani, H., Kokkotas, K.D.: Phys. Rev. D 97, 124034 (2018)

    ADS  Google Scholar 

  • Tolman, R.C.: Phys. Rev. 55, 364 (1939)

    ADS  Google Scholar 

  • Tooper, R.F.: Astrophys. J. 140, 434 (1964)

    ADS  MathSciNet  Google Scholar 

  • Tooper, R.F.: Astrophys. J. 142, 1541 (1965)

    ADS  MathSciNet  Google Scholar 

  • Walecka, J.D.: Ann. Phys. 83, 491 (1974)

    ADS  Google Scholar 

  • Watts, A.L., et al.: Rev. Mod. Phys. 88, 021001 (2016)

    ADS  Google Scholar 

  • Weinberg, S.: Gravitational and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  • Wiringa, R.B., Fiks, V., Fabrocini, A.: Phys. Rev. C 38, 1010 (1988)

    ADS  Google Scholar 

  • Yagi, K., Yunes, N.: Science 341, 365 (2013a)

    ADS  Google Scholar 

  • Yagi, K., Yunes, N.: Phys. Rev. D 88, 023009 (2013b)

    ADS  Google Scholar 

  • Yagi, K., Stein, L.C., Pappas, G., Yunes, N., Apostolatos, T.A.: Phys. Rev. D 90, 063010 (2014)

    ADS  Google Scholar 

  • Yagi, K., Yunes, N.: Phys. Rep. 681, 1–72 (2017)

    ADS  MathSciNet  Google Scholar 

  • Yousaf, Z., Bhatti, M.Z.: Eur. Phys. J. C 76, 267 (2016)

    ADS  Google Scholar 

  • Zeldovich, Ya.B., Novikov, I.D.: Relativistic Astrophysics, vol. I. University of Chigago Press, Chicago (1978)

    Google Scholar 

Download references

Acknowledgements

Ch.C.M. would like to thank the Theoretical Astrophysics Department of the University of Tuebingen, where part of this work was performed, for the warm hospitality and Professor K. Kokkotas for his constructive comments and insights during the preparation of the manuscript. This work was partially supported by the COST action PHAROS (CA16214) and the DAAD Germany–Greece grant ID 57340132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Moustakidis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The numerical integration of the integrals related with the definition of \(\langle \gamma \rangle \) and \(\gamma _{\mathrm{cr}}\) can easily be performed. However, following this procedure it is difficult to perceive the final results. Actually, this is easy only in some approximated cases, e.g. in the Newtonian and post-Newtonian limit. In the following, we try to generalize the finding of Chandrasekhar (1964a) to even higher values of the compactness where the relativistic effects become important. The expression of the critical adiabatic index, with the help of the TOV equations (2), (3), using the trial function \(\xi (r)=r e^{\nu /2}\) (in order to be consistent with the pioneering work of Chandrasekhar (1964a)), and, performing a Taylor expansion inside the integrals in each case, we found for the uniform and the Tolman VII solution that (see also Merafina and Ruffini 1989)

$$ \gamma _{\mathrm{cr}}(\beta )=\frac{4}{3}+\frac{38}{42}\beta { \mathcal{P}}( \beta ) $$
(21)

where, for the uniform solution, \(\mathcal{P}(\beta )\) takes the form

$$ {\mathcal{P}}_{\mathrm{uniform}}(\beta )=1+2.13\beta +4.65\beta ^{2}+10.22 \beta ^{3}+\mathcal{O}\bigl(\beta ^{4}\bigr) $$
(22)

and for the Tolman VII solution:

$$ {\mathcal{P}}_{\mathrm{Tolman}}(\beta )=1.19+2.93\beta +7.34\beta ^{2}+19.36 \beta ^{3}+\mathcal{O}\bigl(\beta ^{4}\bigr) . $$
(23)

Obviously, the approximation (21), using Eq. (22), to a linear term, confirms the Chandrasekhar expression (12). The above expressions are good approximations for \(\beta <0.2\). However, they fail for higher values of \(\beta \) and consequently additional terms must be included. In particular, \(\gamma _{\mathrm{cr}}\) increases very fast for \(\beta >0.25\) due to the strong effects of general relativity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koliogiannis, P.S., Moustakidis, C.C. Constraints on the equation of state from the stability condition of neutron stars. Astrophys Space Sci 364, 52 (2019). https://doi.org/10.1007/s10509-019-3539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-019-3539-7

Keywords

Navigation