Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum

Abstract

Study of variations in solar activity parameters has its importance in understanding the underlying mechanisms of space weather phenomena and space climate variability. We have used the already observed data of solar parameters viz. sunspot numbers, F10.7 cm index and Lyman alpha index recorded for last seventy years (1947–2017). We have applied the Hodrick Prescott filtering method to bifurcate each time series into cyclic and trend parts. The cyclic part of each time series was used to analyse the persistence while the trend part was used to obtain the input data for the study of future predictions. Further, the cyclic component of each parameter was analysed by using the rescaled range analysis and the value of Hurst exponent was obtained for sunspot numbers, F10.7 cm index and Lyman alpha index as 0.90, 0.93 and 0.96 respectively. By using the simplex projection analysis on the values of amplitude and phase of the trend component of each time series, we have reconstructed the future time series representing solar cycles 25 and 26. When extrapolated further in time, the reconstructed series provided the maximum values of sunspot numbers as \(89 \pm 9\) and \(78 \pm 7\); maximum values of F10.7 cm index were \(124 \pm 11\) and \(118 \pm 9\) and Lyman alpha index were \(4.61 \pm 0.08\) and \(4.41 \pm 0.08\) respectively for solar cycles 25 and 26. In our analysis we have found that the solar cycle 25 will start in the year 2021 (January) and will last till 2031 (February) with its maxima in year 2024 (February) while the solar cycle 26 will start in the year 2031 (March) with its maxima in 2036 (June) and will last till the year 2041 (February). We have also compared the activities of solar cycles 5 and 6 (Dalton minima periods) to solar cycles 25 and 26 and have observed that the other solar minimum is underway.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdusamatov, K.I.: Kinemat. Phys. Celest. Bodies 23(3), 97–100 (2007)

    ADS  Article  Google Scholar 

  2. Adams, M., Hathaway, D.H., Stark, B.A., Musielak, Z.E.: Sol. Phys. 174, 341–355 (1997). https://doi.org/10.1023/A:1004972624527

    ADS  Article  Google Scholar 

  3. Clilverd, M.A., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.J.: Space Weather 4(9), S09005 (2006). https://doi.org/10.1029/2005SW000207

    ADS  Article  Google Scholar 

  4. Cohen, T.J., Lintz, P.R.: Nature 250, 398 (1974)

    ADS  Article  Google Scholar 

  5. Crutchfield, J.P.: Prediction and stability in classical mechanics. Bachelor’s Thesis, University of California, Santa Cruz (1979)

  6. DeMeyer, F.: Sol. Phys. 70, 259 (1981)

    ADS  Article  Google Scholar 

  7. Du, Z., Du, S.: Sol. Phys. 238, 431–437 (2006)

    ADS  Article  Google Scholar 

  8. Eddy, J.A.: Science 192, 1189 (1976)

    ADS  Article  Google Scholar 

  9. Ehlgen, J.: Econ. Lett. 61, 345–349 (1998)

    Article  Google Scholar 

  10. Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce noise. In: Lee, Y.C. (ed.) Evolution, Learning and Cognition, pp. 277–304. World Scientific, New York (1989)

    Google Scholar 

  11. French, M.W.: FEDS Working Paper No. 2001-44. SSRN 293105 (2001)

  12. Fröhlich, C., Lean, J.: Astron. Astrophys. Rev. 12, 273–320 (2004)

    ADS  Article  Google Scholar 

  13. Hady, A.A.: J. Advert. Res. 4, 209–214 (2013)

    Article  Google Scholar 

  14. Hamid, R.H., Galal, A.A.: J. Advert. Res. 4(3), 275–278 (2013)

    Article  Google Scholar 

  15. Hathaway, D.H., Wilson, R.M.: Sol. Phys. 224, 5–19 (2004)

    ADS  Article  Google Scholar 

  16. Hiremath, K.M.: Astrophys. Space Sci. 314, 45–49 (2008)

    ADS  Article  Google Scholar 

  17. Hodrick, R., Prescott, E.C.: Post-war U.S. business cycles: an empirical investigation. Mimeo, Carnegie-Mellon University, Pittsburgh, PA (1980)

  18. Hoyt, D.V., Schatten, K.H.: The Role of the Sun in Climate Change. Oxford University Press, New York (1997), 279 pp

    Google Scholar 

  19. Hurst, H.E.: Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)

    Google Scholar 

  20. Javaraiah, J.: New Astron. 34, 54 (2015). https://doi.org/10.1016/j.newast.2014.04.001

    ADS  Article  Google Scholar 

  21. Kane, R.P.: Sol. Phys. 246, 487–493 (2007)

    ADS  Article  Google Scholar 

  22. Kane, R.P., Trivedi, N.B.: J. Geomagn. Geoelectr. 37, 1071 (1985)

    ADS  Article  Google Scholar 

  23. King, R.G., Rebelo, S.T.: J. Econ. Dyn. Control 17, 2077232 (1993)

    Article  Google Scholar 

  24. Lean, J., Beer, J., Bradley, R.: Geophys. Res. Lett. 22, 3195 (1995)

    ADS  Article  Google Scholar 

  25. Mandelbrot, B.: Ann. Econ. Soc. Meas. 1, 259–290 (1972)

    Google Scholar 

  26. Mandelbrot, B.B., Wallis, J.R.: Water Resour. Res. 5(2), 321–340 (1969). https://doi.org/10.1029/WR005i002p00321

    ADS  Article  Google Scholar 

  27. Narisma, G., Teresa, T.: Forecasting the behavior of ecological time series by the simplex projection method. Thesis, University of the Philippines, Diliman (1997)

  28. Narisma, G.T., Villarin, J.T.: Global climate forecasting by the simplex projection method. Presented at the Samahang Pisikang Pilipinas (SPP) Congress, 2000

  29. Oliver, R., Ballester, J.L.: Sol. Phys. 169, 215 (1996)

    ADS  Article  Google Scholar 

  30. Oliver, R., Ballester, J.L.: Phys. Rev. E 58, 5650–5654 (1998)

    ADS  Article  Google Scholar 

  31. Pirjola, R.: Adv. Space Res. 36(12), 2231–2240 (2005)

    ADS  Article  Google Scholar 

  32. Pishkalo, M.I.: Kinemat. Phys. Celest. Bodies 24, 242–247 (2008)

    ADS  Article  Google Scholar 

  33. Quassim, M., Attia, A.F., Elminir, H.: Sol. Phys. 243, 253–258 (2007)

    ADS  Article  Google Scholar 

  34. Raven, M., Unglin, H.: Rev. Econ. Stat. 84, 371 (2002)

    Article  Google Scholar 

  35. Reid, G.C.: Nature 329, 142 (1987)

    ADS  Article  Google Scholar 

  36. Rozelot, J.P.: On the stability of the 11-year solar cycle period (and a few others). Sol. Phys. 149, 149 (1994)

    ADS  Article  Google Scholar 

  37. Rypdal, M., Rypdal, K.: J. Geophys. Res. 117, A04103 (2012). https://doi.org/10.1029/2011JA017283

    ADS  Article  Google Scholar 

  38. Schatten, K.H., Tobiska, W.K.: Bull. Am. Astron. Soc. 35, 817 (2003)

    Google Scholar 

  39. Shepherd, S.J., Zharkov, S.I., Zharkova, V.V.: Astrophys. J. 795, 46–54 (2014)

    ADS  Article  Google Scholar 

  40. Siingh, D., Singh, R.P., Singh, A.K., Kulkarni, M.N., Gautam, A.S., Singh, A.K.: Surv. Geophys. 32, 659–703 (2011)

    ADS  Article  Google Scholar 

  41. Singh, A.K., Bhargawa, A.: Astrophys. Space Sci. 362, 199 (2017)

    ADS  Article  Google Scholar 

  42. Singh, A.K., Tonk, A.: Astrophys. Space Sci. 353, 367–371 (2014)

    ADS  Article  Google Scholar 

  43. Singh, A.K., Siingh, D., Singh, R.P.: Surv. Geophys. 31, 581–638 (2010)

    ADS  Article  Google Scholar 

  44. Sugihara, G., May, R.M.: Nature 344, 734–741 (1990)

    ADS  Article  Google Scholar 

  45. Suyal, V., Prasad, A., Singh, H.P.: Sol. Phys. 260, 441–449 (2009)

    ADS  Article  Google Scholar 

  46. Takens, F.: On the Numerical Determination of the Dimension of an Attractor. Lect. Notes Math., vol. 898, pp. 366–381 (1981)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to world data centre (WDC) for the production and preservation and dissemination of the international sunspot number (SILSO), World data centre for solar terrestrial physics Moscow and LASP interactive solar irradiance data centre for providing the data. AB is thankful to University Grants Commission (UGC) for providing R. G. National Fellowship (Award No. F1-17.1/2016-17/RGNF-2015-17-SC-UTT-28091/ (SA-III/website). We are also thankful to the learned reviewers for giving some good comments and suggestions to improve the quality of the work carried out.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Bhargawa, A. Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophys Space Sci 364, 12 (2019). https://doi.org/10.1007/s10509-019-3500-9

Download citation

Keywords

  • Solar activity
  • Sunspot numbers
  • Hurst exponent
  • Rescale range analysis
  • Simplex projection analysis, solar minimum