Abstract
Study of variations in solar activity parameters has its importance in understanding the underlying mechanisms of space weather phenomena and space climate variability. We have used the already observed data of solar parameters viz. sunspot numbers, F10.7 cm index and Lyman alpha index recorded for last seventy years (1947–2017). We have applied the Hodrick Prescott filtering method to bifurcate each time series into cyclic and trend parts. The cyclic part of each time series was used to analyse the persistence while the trend part was used to obtain the input data for the study of future predictions. Further, the cyclic component of each parameter was analysed by using the rescaled range analysis and the value of Hurst exponent was obtained for sunspot numbers, F10.7 cm index and Lyman alpha index as 0.90, 0.93 and 0.96 respectively. By using the simplex projection analysis on the values of amplitude and phase of the trend component of each time series, we have reconstructed the future time series representing solar cycles 25 and 26. When extrapolated further in time, the reconstructed series provided the maximum values of sunspot numbers as \(89 \pm 9\) and \(78 \pm 7\); maximum values of F10.7 cm index were \(124 \pm 11\) and \(118 \pm 9\) and Lyman alpha index were \(4.61 \pm 0.08\) and \(4.41 \pm 0.08\) respectively for solar cycles 25 and 26. In our analysis we have found that the solar cycle 25 will start in the year 2021 (January) and will last till 2031 (February) with its maxima in year 2024 (February) while the solar cycle 26 will start in the year 2031 (March) with its maxima in 2036 (June) and will last till the year 2041 (February). We have also compared the activities of solar cycles 5 and 6 (Dalton minima periods) to solar cycles 25 and 26 and have observed that the other solar minimum is underway.
This is a preview of subscription content, to check access.






References
Abdusamatov, K.I.: Kinemat. Phys. Celest. Bodies 23(3), 97–100 (2007)
Adams, M., Hathaway, D.H., Stark, B.A., Musielak, Z.E.: Sol. Phys. 174, 341–355 (1997). https://doi.org/10.1023/A:1004972624527
Clilverd, M.A., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.J.: Space Weather 4(9), S09005 (2006). https://doi.org/10.1029/2005SW000207
Cohen, T.J., Lintz, P.R.: Nature 250, 398 (1974)
Crutchfield, J.P.: Prediction and stability in classical mechanics. Bachelor’s Thesis, University of California, Santa Cruz (1979)
DeMeyer, F.: Sol. Phys. 70, 259 (1981)
Du, Z., Du, S.: Sol. Phys. 238, 431–437 (2006)
Eddy, J.A.: Science 192, 1189 (1976)
Ehlgen, J.: Econ. Lett. 61, 345–349 (1998)
Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce noise. In: Lee, Y.C. (ed.) Evolution, Learning and Cognition, pp. 277–304. World Scientific, New York (1989)
French, M.W.: FEDS Working Paper No. 2001-44. SSRN 293105 (2001)
Fröhlich, C., Lean, J.: Astron. Astrophys. Rev. 12, 273–320 (2004)
Hady, A.A.: J. Advert. Res. 4, 209–214 (2013)
Hamid, R.H., Galal, A.A.: J. Advert. Res. 4(3), 275–278 (2013)
Hathaway, D.H., Wilson, R.M.: Sol. Phys. 224, 5–19 (2004)
Hiremath, K.M.: Astrophys. Space Sci. 314, 45–49 (2008)
Hodrick, R., Prescott, E.C.: Post-war U.S. business cycles: an empirical investigation. Mimeo, Carnegie-Mellon University, Pittsburgh, PA (1980)
Hoyt, D.V., Schatten, K.H.: The Role of the Sun in Climate Change. Oxford University Press, New York (1997), 279 pp
Hurst, H.E.: Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)
Javaraiah, J.: New Astron. 34, 54 (2015). https://doi.org/10.1016/j.newast.2014.04.001
Kane, R.P.: Sol. Phys. 246, 487–493 (2007)
Kane, R.P., Trivedi, N.B.: J. Geomagn. Geoelectr. 37, 1071 (1985)
King, R.G., Rebelo, S.T.: J. Econ. Dyn. Control 17, 2077232 (1993)
Lean, J., Beer, J., Bradley, R.: Geophys. Res. Lett. 22, 3195 (1995)
Mandelbrot, B.: Ann. Econ. Soc. Meas. 1, 259–290 (1972)
Mandelbrot, B.B., Wallis, J.R.: Water Resour. Res. 5(2), 321–340 (1969). https://doi.org/10.1029/WR005i002p00321
Narisma, G., Teresa, T.: Forecasting the behavior of ecological time series by the simplex projection method. Thesis, University of the Philippines, Diliman (1997)
Narisma, G.T., Villarin, J.T.: Global climate forecasting by the simplex projection method. Presented at the Samahang Pisikang Pilipinas (SPP) Congress, 2000
Oliver, R., Ballester, J.L.: Sol. Phys. 169, 215 (1996)
Oliver, R., Ballester, J.L.: Phys. Rev. E 58, 5650–5654 (1998)
Pirjola, R.: Adv. Space Res. 36(12), 2231–2240 (2005)
Pishkalo, M.I.: Kinemat. Phys. Celest. Bodies 24, 242–247 (2008)
Quassim, M., Attia, A.F., Elminir, H.: Sol. Phys. 243, 253–258 (2007)
Raven, M., Unglin, H.: Rev. Econ. Stat. 84, 371 (2002)
Reid, G.C.: Nature 329, 142 (1987)
Rozelot, J.P.: On the stability of the 11-year solar cycle period (and a few others). Sol. Phys. 149, 149 (1994)
Rypdal, M., Rypdal, K.: J. Geophys. Res. 117, A04103 (2012). https://doi.org/10.1029/2011JA017283
Schatten, K.H., Tobiska, W.K.: Bull. Am. Astron. Soc. 35, 817 (2003)
Shepherd, S.J., Zharkov, S.I., Zharkova, V.V.: Astrophys. J. 795, 46–54 (2014)
Siingh, D., Singh, R.P., Singh, A.K., Kulkarni, M.N., Gautam, A.S., Singh, A.K.: Surv. Geophys. 32, 659–703 (2011)
Singh, A.K., Bhargawa, A.: Astrophys. Space Sci. 362, 199 (2017)
Singh, A.K., Tonk, A.: Astrophys. Space Sci. 353, 367–371 (2014)
Singh, A.K., Siingh, D., Singh, R.P.: Surv. Geophys. 31, 581–638 (2010)
Sugihara, G., May, R.M.: Nature 344, 734–741 (1990)
Suyal, V., Prasad, A., Singh, H.P.: Sol. Phys. 260, 441–449 (2009)
Takens, F.: On the Numerical Determination of the Dimension of an Attractor. Lect. Notes Math., vol. 898, pp. 366–381 (1981)
Acknowledgements
Authors are thankful to world data centre (WDC) for the production and preservation and dissemination of the international sunspot number (SILSO), World data centre for solar terrestrial physics Moscow and LASP interactive solar irradiance data centre for providing the data. AB is thankful to University Grants Commission (UGC) for providing R. G. National Fellowship (Award No. F1-17.1/2016-17/RGNF-2015-17-SC-UTT-28091/ (SA-III/website). We are also thankful to the learned reviewers for giving some good comments and suggestions to improve the quality of the work carried out.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Singh, A.K., Bhargawa, A. Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophys Space Sci 364, 12 (2019). https://doi.org/10.1007/s10509-019-3500-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-019-3500-9