Advertisement

Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum

  • A. K. SinghEmail author
  • Asheesh Bhargawa
Original Article

Abstract

Study of variations in solar activity parameters has its importance in understanding the underlying mechanisms of space weather phenomena and space climate variability. We have used the already observed data of solar parameters viz. sunspot numbers, F10.7 cm index and Lyman alpha index recorded for last seventy years (1947–2017). We have applied the Hodrick Prescott filtering method to bifurcate each time series into cyclic and trend parts. The cyclic part of each time series was used to analyse the persistence while the trend part was used to obtain the input data for the study of future predictions. Further, the cyclic component of each parameter was analysed by using the rescaled range analysis and the value of Hurst exponent was obtained for sunspot numbers, F10.7 cm index and Lyman alpha index as 0.90, 0.93 and 0.96 respectively. By using the simplex projection analysis on the values of amplitude and phase of the trend component of each time series, we have reconstructed the future time series representing solar cycles 25 and 26. When extrapolated further in time, the reconstructed series provided the maximum values of sunspot numbers as \(89 \pm 9\) and \(78 \pm 7\); maximum values of F10.7 cm index were \(124 \pm 11\) and \(118 \pm 9\) and Lyman alpha index were \(4.61 \pm 0.08\) and \(4.41 \pm 0.08\) respectively for solar cycles 25 and 26. In our analysis we have found that the solar cycle 25 will start in the year 2021 (January) and will last till 2031 (February) with its maxima in year 2024 (February) while the solar cycle 26 will start in the year 2031 (March) with its maxima in 2036 (June) and will last till the year 2041 (February). We have also compared the activities of solar cycles 5 and 6 (Dalton minima periods) to solar cycles 25 and 26 and have observed that the other solar minimum is underway.

Keywords

Solar activity Sunspot numbers Hurst exponent Rescale range analysis Simplex projection analysis, solar minimum 

Notes

Acknowledgements

Authors are thankful to world data centre (WDC) for the production and preservation and dissemination of the international sunspot number (SILSO), World data centre for solar terrestrial physics Moscow and LASP interactive solar irradiance data centre for providing the data. AB is thankful to University Grants Commission (UGC) for providing R. G. National Fellowship (Award No. F1-17.1/2016-17/RGNF-2015-17-SC-UTT-28091/ (SA-III/website). We are also thankful to the learned reviewers for giving some good comments and suggestions to improve the quality of the work carried out.

References

  1. Abdusamatov, K.I.: Kinemat. Phys. Celest. Bodies 23(3), 97–100 (2007) ADSCrossRefGoogle Scholar
  2. Adams, M., Hathaway, D.H., Stark, B.A., Musielak, Z.E.: Sol. Phys. 174, 341–355 (1997).  https://doi.org/10.1023/A:1004972624527 ADSCrossRefGoogle Scholar
  3. Clilverd, M.A., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.J.: Space Weather 4(9), S09005 (2006).  https://doi.org/10.1029/2005SW000207 ADSCrossRefGoogle Scholar
  4. Cohen, T.J., Lintz, P.R.: Nature 250, 398 (1974) ADSCrossRefGoogle Scholar
  5. Crutchfield, J.P.: Prediction and stability in classical mechanics. Bachelor’s Thesis, University of California, Santa Cruz (1979) Google Scholar
  6. DeMeyer, F.: Sol. Phys. 70, 259 (1981) ADSCrossRefGoogle Scholar
  7. Du, Z., Du, S.: Sol. Phys. 238, 431–437 (2006) ADSCrossRefGoogle Scholar
  8. Eddy, J.A.: Science 192, 1189 (1976) ADSCrossRefGoogle Scholar
  9. Ehlgen, J.: Econ. Lett. 61, 345–349 (1998) CrossRefGoogle Scholar
  10. Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce noise. In: Lee, Y.C. (ed.) Evolution, Learning and Cognition, pp. 277–304. World Scientific, New York (1989) CrossRefGoogle Scholar
  11. French, M.W.: FEDS Working Paper No. 2001-44. SSRN 293105 (2001) Google Scholar
  12. Fröhlich, C., Lean, J.: Astron. Astrophys. Rev. 12, 273–320 (2004) ADSCrossRefGoogle Scholar
  13. Hady, A.A.: J. Advert. Res. 4, 209–214 (2013) CrossRefGoogle Scholar
  14. Hamid, R.H., Galal, A.A.: J. Advert. Res. 4(3), 275–278 (2013) CrossRefGoogle Scholar
  15. Hathaway, D.H., Wilson, R.M.: Sol. Phys. 224, 5–19 (2004) ADSCrossRefGoogle Scholar
  16. Hiremath, K.M.: Astrophys. Space Sci. 314, 45–49 (2008) ADSCrossRefGoogle Scholar
  17. Hodrick, R., Prescott, E.C.: Post-war U.S. business cycles: an empirical investigation. Mimeo, Carnegie-Mellon University, Pittsburgh, PA (1980) Google Scholar
  18. Hoyt, D.V., Schatten, K.H.: The Role of the Sun in Climate Change. Oxford University Press, New York (1997), 279 pp Google Scholar
  19. Hurst, H.E.: Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951) Google Scholar
  20. Javaraiah, J.: New Astron. 34, 54 (2015).  https://doi.org/10.1016/j.newast.2014.04.001 ADSCrossRefGoogle Scholar
  21. Kane, R.P.: Sol. Phys. 246, 487–493 (2007) ADSCrossRefGoogle Scholar
  22. Kane, R.P., Trivedi, N.B.: J. Geomagn. Geoelectr. 37, 1071 (1985) ADSCrossRefGoogle Scholar
  23. King, R.G., Rebelo, S.T.: J. Econ. Dyn. Control 17, 2077232 (1993) CrossRefGoogle Scholar
  24. Lean, J., Beer, J., Bradley, R.: Geophys. Res. Lett. 22, 3195 (1995) ADSCrossRefGoogle Scholar
  25. Mandelbrot, B.: Ann. Econ. Soc. Meas. 1, 259–290 (1972) Google Scholar
  26. Mandelbrot, B.B., Wallis, J.R.: Water Resour. Res. 5(2), 321–340 (1969).  https://doi.org/10.1029/WR005i002p00321 ADSCrossRefGoogle Scholar
  27. Narisma, G., Teresa, T.: Forecasting the behavior of ecological time series by the simplex projection method. Thesis, University of the Philippines, Diliman (1997) Google Scholar
  28. Narisma, G.T., Villarin, J.T.: Global climate forecasting by the simplex projection method. Presented at the Samahang Pisikang Pilipinas (SPP) Congress, 2000 Google Scholar
  29. Oliver, R., Ballester, J.L.: Sol. Phys. 169, 215 (1996) ADSCrossRefGoogle Scholar
  30. Oliver, R., Ballester, J.L.: Phys. Rev. E 58, 5650–5654 (1998) ADSCrossRefGoogle Scholar
  31. Pirjola, R.: Adv. Space Res. 36(12), 2231–2240 (2005) ADSCrossRefGoogle Scholar
  32. Pishkalo, M.I.: Kinemat. Phys. Celest. Bodies 24, 242–247 (2008) ADSCrossRefGoogle Scholar
  33. Quassim, M., Attia, A.F., Elminir, H.: Sol. Phys. 243, 253–258 (2007) ADSCrossRefGoogle Scholar
  34. Raven, M., Unglin, H.: Rev. Econ. Stat. 84, 371 (2002) CrossRefGoogle Scholar
  35. Reid, G.C.: Nature 329, 142 (1987) ADSCrossRefGoogle Scholar
  36. Rozelot, J.P.: On the stability of the 11-year solar cycle period (and a few others). Sol. Phys. 149, 149 (1994) ADSCrossRefGoogle Scholar
  37. Rypdal, M., Rypdal, K.: J. Geophys. Res. 117, A04103 (2012).  https://doi.org/10.1029/2011JA017283 ADSCrossRefGoogle Scholar
  38. Schatten, K.H., Tobiska, W.K.: Bull. Am. Astron. Soc. 35, 817 (2003) Google Scholar
  39. Shepherd, S.J., Zharkov, S.I., Zharkova, V.V.: Astrophys. J. 795, 46–54 (2014) ADSCrossRefGoogle Scholar
  40. Siingh, D., Singh, R.P., Singh, A.K., Kulkarni, M.N., Gautam, A.S., Singh, A.K.: Surv. Geophys. 32, 659–703 (2011) ADSCrossRefGoogle Scholar
  41. Singh, A.K., Bhargawa, A.: Astrophys. Space Sci. 362, 199 (2017) ADSCrossRefGoogle Scholar
  42. Singh, A.K., Tonk, A.: Astrophys. Space Sci. 353, 367–371 (2014) ADSCrossRefGoogle Scholar
  43. Singh, A.K., Siingh, D., Singh, R.P.: Surv. Geophys. 31, 581–638 (2010) ADSCrossRefGoogle Scholar
  44. Sugihara, G., May, R.M.: Nature 344, 734–741 (1990) ADSCrossRefGoogle Scholar
  45. Suyal, V., Prasad, A., Singh, H.P.: Sol. Phys. 260, 441–449 (2009) ADSCrossRefGoogle Scholar
  46. Takens, F.: On the Numerical Determination of the Dimension of an Attractor. Lect. Notes Math., vol. 898, pp. 366–381 (1981) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of LucknowLucknowIndia

Personalised recommendations