Skip to main content
Log in

Comparison and analysis on lunar rotation with lunar gravity field models

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Understanding the structure of and dynamic processes in the deep interior of planets is crucial for understanding their origin and evolution. An effective way to constrain them is through observation of rotation and subsequent simulation. In this paper, a numerical model of the Moon’s rotation and orbital motion is developed based on previous studies and implemented independently. The Moon is modeled as an anelastic body with a liquid core. The equations of the rotation were nonlinear and the Euler angles are cross coupled. We solve them numerically via the Runge-Kutta-Fehlberg (RKF) and multi-steps Adams-Bashforth-Moulton (ABM) predictor-corrector numerical integration. We have found that adequate accuracy is maintained by taking twelve steps per day using eleventh differences in the integrating polynomial. The lunar orbital and rotational equations are strongly coupled, so we integrated the rotation and motion simultaneously. We refer to other planetary informations from the newest planetary and lunar ephemeris INPOP17a, which is reported had fitted the longest LLR (Lunar Laser Ranging) observation data. Using the model GL660B from GRAIL (Gravity Recovery and Interior Laboratory) mission, we firstly compare our numerical results with the INPOP17a to prove the reasonability of our model. After that we apply the lunar gravity model CEGM02 determined from Chang’E-1 mission and SGM100h from SELENE mission to our model, the difference between results from CEGM02 and GL660B are less than \(-0.20 \sim0.15\) arc-second, and \(-0.25 \sim0.20\) arc-second for GL660B and SGM100h. Compared to SGM100h, the results show that the low degree and order coefficients (less than 6 from this paper) of lunar gravity field were improved in CEGM02 as expected. It is the first time to demonstrate that these models can be applied to lunar rotation model. These results manifest that a development of the gravity field measure will help us to know the rotation motion more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cappallo, R., King, R., Counselman, C., Shapiro, I.: Moon Planets 24(3), 281 (1981)

    Article  ADS  Google Scholar 

  • Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R.: Science 265(5171), 482 (1994)

    Article  ADS  Google Scholar 

  • Diethelm, K., Ford, N.J., Freed, A.D.: Nonlinear Dyn. 29(1–4), 3 (2002)

    Article  Google Scholar 

  • Eckhardt, D.H.: In: International Astronomical Union Colloquium, vol. 63, p. 193. Cambridge University Press, Cambridge (1981a)

    Google Scholar 

  • Eckhardt, D.H.: Moon Planets 25(1), 3 (1981b)

    Article  ADS  Google Scholar 

  • Folkner, W.M., Williams, J.G., Boggs, D.H.: IPN Progress Report 42-178 (2008)

  • Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: IPN Progress Report 42-196 (2014)

  • Hofmann, F., Müller, J.: Class. Quantum Gravity 35(3), 035015 (2018)

    Article  ADS  Google Scholar 

  • Isenberg, C.: Eur. J. Phys. 18(2) (1997)

  • Kaula, W.: Theory of Satellite Geodesy p. 98. Blaisdell, Waltham (1966)

    Google Scholar 

  • Konopliv, A., Binder, A., Hood, L., Kucinskas, A., Sjogren, W., Williams, J.: Science 281(5382), 1476 (1998)

    Article  ADS  Google Scholar 

  • Konopliv, A.S., Asmar, S.W., Carranza, E., Sjogren, W.L., Yuan, D.N.: Icarus 150(1), 1 (2001)

    Article  ADS  Google Scholar 

  • Konopliv, A.S., Park, R.S., Yuan, D.-N., Asmar, S.W., Watkins, M.M., Williams, J.G., Fahnestock, E., Gerhard, K., Paik, M., Strekalov, D., et al.: J. Geophys. Res. 118(7), 1415 (2013)

    Article  Google Scholar 

  • Lemoine, F.G., Goossens, S., Sabaka, T.J., Nicholas, J.B., Mazarico, E., Rowlands, D.D., Loomis, B.D., Chinn, D.S., Caprette, D.S., Neumann, G.A., et al.: J. Geophys. Res. 118(8), 1676 (2013)

    Article  Google Scholar 

  • Matsumoto, K., Goossens, S., Ishihara, Y., Liu, Q., Kikuchi, F., Iwata, T., Namiki, N., Noda, H., Hanada, H., Kawano, N., et al.: J. Geophys. Res., Planets 115(E6), E06007 (2010)

    Article  ADS  Google Scholar 

  • Namiki, N., Iwata, T., Matsumoto, K., Hanada, H., Noda, H., Goossens, S., Ogawa, M., Kawano, N., Asari, K., Tsuruta, S., et al.: Science 323(5916), 900 (2009)

    Article  ADS  Google Scholar 

  • Ouyang, Z., Li, C., Zou, Y., Zhang, H., Lu, C., Liu, J., et al.: Chin. J. Space Sci. 30(5), 392 (2010)

    Google Scholar 

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: J. Geophys. Res., Solid Earth 117(B4), B04406 (2012)

    Article  ADS  Google Scholar 

  • Pavlov, D.A., Williams, J.G., Suvorkin, V.V.: Celest. Mech. Dyn. Astron. 126(1–3), 61 (2016)

    Article  ADS  Google Scholar 

  • Petrova, N., Zagidullin, A., Nefedyev, Y., Kosulin, V., Andreev, A.: Adv. Space Res. 60(10), 2303 (2017)

    Article  ADS  Google Scholar 

  • Ping, J., Li, W., Han, S., Zhang, T., Wang, M., Wu, G., Wang, Z., Cao, J., Jian, N., Yang, Y., et al.: Sci. China, Phys. Mech. Astron. 47(5), 059508 (2017)

    Article  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Rambaux, N., Williams, J.G.: Celest. Mech. Dyn. Astron. 109(1), 85 (2011)

    Article  ADS  Google Scholar 

  • Schuh, H., Behrend, D.: J. Geodyn. 61(61), 68 (2012)

    Article  Google Scholar 

  • Simos, T.: Comput. Math. Appl. 25(6), 95 (1993)

    Article  MathSciNet  Google Scholar 

  • Standish, E.: JPL planetary and lunar ephemerides, de405, Interoffice Memo. 312. Technical report, F-98-048. Jet Propulsion Laboratory, Pasadena, California (1998)

  • Toksöz, M.N., Dainty, A.M., Solomon, S.C., Anderson, K.R.: Rev. Geophys. 12(4), 539 (1974)

    Article  ADS  Google Scholar 

  • Urban, S.E., Seidelmann, P.K.: In: American Astronomical Society Meeting Abstracts, vol. 223 (2014)

    Google Scholar 

  • Vasilyev, M., Yagudina, E.: Sol. Syst. Res. 48(2), 158 (2014)

    Article  ADS  Google Scholar 

  • Viswanathan, V.: Improving the dynamical model of the moon using lunar laser ranging (LLR) and spacecraft data. PhD thesis, Paris Sciences et Lettres (2017)

  • Viswanathan, V., Fienga, A., Gastineau, M., Laskar, J.: Notes Scientifiques et Techniques de l’Institut de Mécanique Céleste, 108 (2017), 39 pp. ISBN 2-910015-79-3

  • Viswanathan, V., Fienga, A., Minazzoli, O., Bernus, L., Laskar, J., Gastineau, M.: Mon. Not. R. Astron. Soc. 476(2), 1877 (2018)

    Article  ADS  Google Scholar 

  • Weber, R.C., Lin, P.-Y., Garnero, E.J., Williams, Q., Lognonne, P.: Science 331(6015), 309 (2011)

    Article  ADS  Google Scholar 

  • Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: J. Geophys. Res., Planets 106(E11), 27933 (2001)

    Article  ADS  Google Scholar 

  • Yagudina, E.: In: Proceedings of Journees (2008)

    Google Scholar 

  • Yan, J.G., Ping, J.S., Huang, Q., Cao, J.F.: Adv. Space Res. 46(1), 50 (2010)

    Article  Google Scholar 

  • Yan, J., Goossens, S., Matsumoto, K., Ping, J., Harada, Y., Iwata, T., Namiki, N., Li, F., Tang, G., Cao, J., et al.: Planet. Space Sci. 62(1), 1 (2012)

    Article  ADS  Google Scholar 

  • Yang, Y.-Z., Li, J.-L., Ping, J.-S., Hanada, H.: Res. Astron. Astrophys. 17(12), 127 (2017)

    Article  ADS  Google Scholar 

  • Yoder, C.: In: Natural and Artificial Satellite Motion, p. 211 (1979)

    Google Scholar 

Download references

Acknowledgements

We are grateful to A. Fienga (Geoazur/IMCCE) for providing the initial lunar core angular velocity used in the INPOP17a.

Gravity model of GRAIL GL660B is downloaded from National Aeronautics and Space Administration (NASA), and gravity model of SGM100h is downloaded from National Astronomical Observatory of Japan (NAOJ). This research is supported by the National Natural Science Foundation of China (U1831132, 41590851), grant of Hubei Province Natural Science (2015CFA011, 2018CFA087), Open Project of Lunar and Planetary Science Laboratory, Macau University of Science and Technology (FDCT 119/2017/A3), Open Funding of Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing (KF201813), and State Key Project for Science and Technology (2015CB857101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Yan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOCX 206 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ping, J., Yan, J. et al. Comparison and analysis on lunar rotation with lunar gravity field models. Astrophys Space Sci 363, 190 (2018). https://doi.org/10.1007/s10509-018-3413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3413-z

Keywords

Navigation