Skip to main content
Log in

Modeling of local ionospheric time varying characteristics based on singular value decomposition over low-latitude GPS stations

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Singular Value Decomposition (SVD) model is implemented to recognize the Total Electron Content (TEC) time series of daily, temporal as well as seasonal characteristics throughout the 24th solar cycle period of the year 2015 in the study. The Vertical (vTEC) analysis has been carried out with Global Positioning System (GPS) data sets collected from five stations from India namely GNT, Guntur (16.44 N, 80.62 E), and IISC, Bangalore (12.97 N, 77.59 E), LCK2, Lucknow (26.76 N, 80.88 E), one station from Thailand namely AITB, Bangkok (14.07 N, 100.61 E), and one station from South Andaman Island namely PBR, Port Blair (11.43 N, 92.43 E), located in low latitude region. The first five singular value modes constitute about 98% of the total variance, which are linearly transformed from the observed TEC data sets. So it is viable to decrease the number of modeling parameters. The Fourier Series Analysis (FSA) is carried out to characterize the solar-cycle, annual and semi-annual dependences through modulating the first three singular values by the solar (F10.7) and geomagnetic (Ap) indices. The positive correlation coefficient (0.75) of daily averaged GPS–TEC with daily averaged F10.7 strongly supports the temporal variations of the ionospheric features depends on the solar activity. Further, the significance and reliability of the SVD model is evaluated by comparing it with GPS–TEC data and the standard global model (Standard Plasma-Spherical Ionospheric Model, SPIM and International Reference Ionosphere, IRI 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A, E., Zhang, D.H., Xiao, Z., Hao, Y.Q., Ridley, A.J., Moldwin, M.: Modeling ionospheric for F2 by using empirical orthogonal function analysis. Ann. Geophys. 29(8), 1501–1515 (2011)

    Article  ADS  Google Scholar 

  • A, E., Zhang, D., Ridley, A.J., Xiao, Z., Hao, Y.: A global model: empirical orthogonal function analysis of total electron content 1999–2009 data. J. Geophys. Res. Space Phys. 117, A03328 (2012)

    ADS  Google Scholar 

  • Abdu, M.: Equatorial ionosphere–thermosphere system: electrodynamics and irregularities. Adv. Space Res. 35(5), 771–787 (2005)

    Article  ADS  Google Scholar 

  • Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenneyDS, A.: LAPACK Users Guide, vol.3. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  • Ansari, K., Panda, S.K., Althuwaynee, O.F., Corumluoglu, O.: Ionospheric TEC from the Turkish Permanent GNSS Network (TPGN) and comparison with ARMA and IRI models. Astrophys. Space Sci. 362(9), 178 (2017)

    Article  ADS  Google Scholar 

  • Ansari, K., Panda, S.K., &Corumluoglu, O.: Mathematical modelling of ionospheric TEC from Turkish permanent GNSS Network (TPGN) observables during 2009–2017 and predictability of NeQuick and Kriging models. Astrophys. Space Sci. 363(3), 42 (2018)

    Article  ADS  Google Scholar 

  • Appleton, E.V.: Two anomalies in the ionosphere. Nature 157(3995), 691 (1946)

    Article  ADS  Google Scholar 

  • Arunpold, S., Tripathi, N.K., Chowdhary, V.R., Raju, D.K.: Comparison of GPS–TEC measurements with IRI-2007 and IRI-2012 modeled TEC at an equatorial latitude station, Bangkok, Thailand. J. Atmos. Sol.-Terr. Phys. 117, 88–94 (2014)

    Article  ADS  Google Scholar 

  • Bagiya, M.S., Joshi, H., Iyer, K., Aggarwal, M., Ravindran, S., Pathan, B.: TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann. Geophys. 27(3), 1047–1057 (2009)

    Article  ADS  Google Scholar 

  • Bilitza, D., Reinisch, B., Lastovicka, J.: Progress in observation-based ionospheric modeling. Space Weather 6, S02002 (2008)

    ADS  Google Scholar 

  • Bouya, Z., Terkildsen, M., Neudegg, D.: Regional GPS-based ionospheric TEC model over Australia using spherical cap harmonic analysis. In: Proceedings of 38th COSPAR Scientific Assembly, Bremen, Germany, vol. 38, p. 4 (2010)

    Google Scholar 

  • Chen, Z., Zhang, S.R., Coster, A.J., Fang, G.: EOF analysis and modeling of GPS TEC climatology over North America. J. Geophys. Res. Space Phys. 120(4), 3118–3129 (2015)

    Article  ADS  Google Scholar 

  • Chowdhary, V.R., Tripathi, N.K., Arunpold, S., Raju, D.K.: Characterization of GPS–TEC in a low-latitude region over Thailand during 2010–2012. Ann. Geophys. 58(5), 0553 (2015)

    Google Scholar 

  • Dabas, R.S.: Ionosphere and its influence on radio communications. Resonance 5(7), 28–43 (2000)

    Article  Google Scholar 

  • Dashora, N., Suresh, S.: Characteristics of low-latitude TEC during solar cycles 23 and 24 using global ionospheric maps (GIMs) over Indian sector. J. Geophys. Res. Space Phys. 120(6), 5176–5193 (2015)

    Article  ADS  Google Scholar 

  • Fejer, B.G.: Low latitude ionospheric electrodynamics. Space Sci. Rev. 158(1), 145–166 (2011)

    Article  ADS  Google Scholar 

  • Habarulema, J.B., McKinnell, L.A., Opperman, B.D.: Regional GPS TEC modeling; Attempted spatial and temporal extrapolation of TEC using neural networks. J. Geophys. Res., Space Phys. 116(A4) (2011)

  • Jakobsen, J., Knudsen, P., Jensen, A.B.: Analysis of local ionospheric time varying characteristics with singular value decomposition. J. Geod. 84(7), 449–456 (2010)

    ADS  Google Scholar 

  • Jakowski, N., Wehrenpfennig, A., Heise, S., Schlueter, S., Noack, T.: Space weather effects in the ionosphere and their impact on positioning. In: ESA Workshop Paper, December (2001)

    Google Scholar 

  • Jamjareegulgarn, P., Supnithi, P., Hozumi, K., Tsugawa, T.: Study of ionospheric topside variations based on NeQuick topside formulation and comparisons with the IRI-2012 model at equatorial latitude station, Chumphon, Thailand. Adv. Space Res. 60(2), 206–221 (2017)

    Article  ADS  Google Scholar 

  • Kaplan, E., Hegarty, C.: Understanding GPS, Principles and Applications. 2. Artech House, INC, Norwood (2006)

    Google Scholar 

  • Kenpankho, P., Watthanasangmechai, K., Supnithi, P., Tsugawa, T., Maruyama, T.: Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station, Chumphon, Thailand. Earth Planets Space 63(4), 365–370 (2011)

    Article  ADS  Google Scholar 

  • Kumar, S., Priyadarshi, S., Krishna, S.G., Singh, A.: GPS–TEC variations during low solar activity period (2007–2009) at Indian low latitude stations. Astrophys. Space Sci. 339(1), 165–178 (2012)

    Article  ADS  Google Scholar 

  • Kumar, S., Tan, E.L., Murti, D.S.: Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes. Earth Planets Space 67(1), 42–58 (2015)

    Article  ADS  Google Scholar 

  • Mao, T., Wan, W., Yue, X., Sun, L., Zhao, B., Guo, J.: An empirical orthogonal function model of total electron content over China. Radio Sci. 43(2) (2008)

  • Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic, San Diego (1984)

    MATH  Google Scholar 

  • Panda, S.K., Gedam, S.S., Rajaram, G.: Study of ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian subcontinental region. Adv. Space Res. 55(8), 1948–1964 (2015)

    Article  ADS  Google Scholar 

  • Parker, R.L.: Geophysical Inverse Theory. Princeton University Press, Princeton (2004)

    MATH  Google Scholar 

  • Preisendorfer, R., Mobley, C.D.: Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam (1988)

    Google Scholar 

  • Seemala, G.K., Valladares, C.E.: Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 46, 1–14 (2011)

    Article  Google Scholar 

  • Sivavaraprasad, G., Ratnam, D.V.: Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station. Adv. Space Res. 60(2), 475–490 (2017)

    Article  ADS  Google Scholar 

  • Skone, S.: Wide area ionosphere grid modelling in the auroral region. UCGE Reports, Number 20123, Department of Geomatics Engineering, The University of Calgary (1998)

  • Yu, Y., Wan, W., Xiong, B., Ren, Z., Zhao, B., Zhang, Y., Ning, B., Liu, L.: Modeling Chinese ionospheric layer parameters based on EOF analysis. Space Weather 13(5), 339–355 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work has been carried out under the project titled ‘Development of Single Frequency Ionospheric correction & plasma bubble detection algorithms using GPS Aided GEO Augmented Navigation (GAGAN) & Navigation Indian Constellation (NavIC) TEC observations’ sponsored by NavIC–GAGAN Utilization Programme at Space Applications Centre, Ahmedabad, India, Project ID: NGP-10. The contribution is also supported by Department of Science and Technology (DST), New Delhi, India, SR/FST/ESI-130/2013(C) under DST–FIST Program. The authors thank the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ratnam Devanaboyina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neeli, R., Dabbakuti, J.R.K.K., Rajesh Chowdhary, V. et al. Modeling of local ionospheric time varying characteristics based on singular value decomposition over low-latitude GPS stations. Astrophys Space Sci 363, 182 (2018). https://doi.org/10.1007/s10509-018-3403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3403-1

Keywords

Navigation