Modeling African equatorial ionosphere using ordinary Kriging interpolation technique for GNSS applications

Abstract

The ability to model the ionosphere accurately for single frequency users in satellite applications has gained some appreciable usage, most especially during quiet conditions in a mild (middle latitudes) ionosphere. However, solving the problem of ionosphere for single frequency user of Global Navigation Satellite Systems (GNSS) in equatorial ionization anomaly (EIA) region is of a great concern for space scientists and engineers. Several methodologies have been used to develop models that describe global or regional maps for ionosphere errors in order to mitigate the effect of the errors on GNSS systems. Global or regional ionosphere Maps have been known to be an efficient tool to monitor the delay introduced by the ionosphere in the satellite signals. This research uses the conventional Planar fit and ordinary Kriging methodologies to assess a regional map for ionosphere correction in equatorial African sector. The result obtained is an indication that modified Kriging methodology describes the EIA ionosphere corrections better compared with ordinary Kriging and Planar fit methodologies.

This is a preview of subscription content, log in to check access.

Fig. 1a
Fig. 1b
Fig. 1c
Fig. 2
Fig. 3a
Fig. 3b
Fig. 3c
Fig. 3d
Fig. 3e
Fig. 3f
Fig. 4a
Fig. 4b
Fig. 4c
Fig. 4d
Fig. 4e
Fig. 4f
Fig. 5a
Fig. 5b
Fig. 5c
Fig. 5d
Fig. 5e
Fig. 5f

References

  1. Aarons, J.: The role of the ring current in the generation or inhibition of equatorial \(F\) layer irregularities during magnetic storm. Radio Sci. 26(4), 1131–1149 (1991)

    ADS  Article  Google Scholar 

  2. Abdu, M.A., Bittencourt, J.A., Batista, I.S.: Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J. Geophys. Res. 86, 11443–11446 (1981)

    ADS  Article  Google Scholar 

  3. Abe, O.E., Rabiu, A.B., Radicella, S.M.: Longitudinal asymmetry of the occurrence of the plasma irregularities over African low latitude region. Pure Appl. Geophys. (2018). https://doi.org/10.1007/s00024-018-1920-z

    Google Scholar 

  4. Adeniyi, J.O.: Magnetic storm effects on the morphology of the equatorial \(F2\) layer. J. Atmos. Terr. Phys. 48, 695 (1986)

    ADS  Article  Google Scholar 

  5. Beutler, G., Bauersima, I., Gurtner, W., Rothacher, M., Schildknecht, T.: Atmospheric Refraction and Other Important Biases in GPS Carrier Phase Observations. Monograph 12. School of Surveying, University of New South Wales, Australia, pp. 15–43 (1988)

  6. Bhattacharya, S., Purohit, P.K., Tiwari, R., Gwal, A.K.: Study of GPS based ionospheric scintillation and its effect on dual frequency receiver. J. Eng. Sci. Manag. Educ. 1, 55–61 (2010)

    Google Scholar 

  7. Campbell, J., Maniatis, T., Muller, A., Vierbuchen, J., Lohmar, F.J.L.: On the generation of ionospheric refraction corrections for single frequency GPS measurements. In: Proc. 4th Int. Geod. Symp. Sat. Pos., 28 Apr.–2 May, Austin (1986)

    Google Scholar 

  8. Chandra, H., Rastogi, R.G.: Equatorial spread F over solar cycle. Ann. Geophys. 28(4), 709–716 (1972)

    Google Scholar 

  9. Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., Radicella, S.M.: Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 81, 111–120 (2007). https://doi.org/10.1007/s00190-006-0093-1

    ADS  Article  Google Scholar 

  10. Conker, R.S., El-Arini, M.B., Albertson, T.W., Klobuchar, J.A., Doherty, P.H.: Development and assessment of real-time algorithms to estimate the ionospheric error bounds for WAAS. Navigation 44(1), 77–87 (1997)

    Article  Google Scholar 

  11. Danilov, A.D.: Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 52(3), 343–366 (2013). https://doi.org/10.1016/j.asr.2013.04.019

    ADS  Article  Google Scholar 

  12. DasGupta, A., Lee, M.C., Klobuchar, J.A.: VHF Faraday polarization fluctuations and strong L-band amplitude scintillations near Appleton anomaly crests. Nature 298, 354–357 (1982). https://doi.org/10.1038/298354a0

    ADS  Article  Google Scholar 

  13. Fejer, B.G., Scherliess, L., de Paula, E.R.: Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread \(F\). J. Geophys. Res. 104(4A), 19859–19869 (1999)

    ADS  Article  Google Scholar 

  14. Lee, C., Liu, J.Y., Reinisch, B.W., Chen, W.S., Chu, F.D.: The effect of prereversal drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum. Ann. Geophys. 23, 745–751 (2005). https://doi.org/10.5194/angeo-23-745-2005

    ADS  Article  Google Scholar 

  15. Manisilla, G.A.: Mid-latitude ionospheric effects of a great geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 66, 1085–1091 (2004)

    ADS  Article  Google Scholar 

  16. Manju, G., Devacia, C.V., Sridharan, R.: On the seasonal variations of the threshold height for the occurrence of equatorial spread \(F\) during solar minimum and maximum year. Ann. Geophys. 25, 855–861 (2007). https://doi.org/10.5194/angeo-25-855-2007

    ADS  Article  Google Scholar 

  17. Mikhailov, V.V., Teryokhin, Yu.L., Wagner, C.-U.: The evaluation of statistical accuracy for ionosphere F1-region theoretical model at low level of solar activity. Geomagn. Aeron. 29, 861–863 (1989)

    ADS  Google Scholar 

  18. Mikhailov, A.V., Mikhailov, V.V., Skoblin, M.G.: Monthly median \(f_{0}F_{2}\) and \(M(3000)F_{2}\) ionospheric model over Europe. In: Numerical Mapping and Modelling and Their Applications to PRIME. Proceedings of the PRIME COST 238 Workshop, pp. 219–236 (1994)

    Google Scholar 

  19. Mikhailov, A.V., Skoblin, M.G., Förster, M.: Daytime F2-layer positive storm effect at middle and lower latitudes. Ann. Geophys. 13, 532–540 (1995)

    ADS  Article  Google Scholar 

  20. Prasad, N., Sarma, A.D.: Ionospheric time delay estimation using IDW grid model for GAGAN. J. Indian Geophys. Union 8(4), 319–327 (2004)

    Google Scholar 

  21. Prolls, G.: In: Volland, H. (ed.) Handbook of Atmospheric Electrodynamics, vol. 2, pp. 195–248. CRC Press, Boca Raton (1995)

    Google Scholar 

  22. Rodríguez-Bouza, M., Paparini, C., Otero, X., Herraiz, M., Radicella, S.M., Abe, O.E., Rodríguez-Caderot, G.: Southern European Ionospheric TEC Maps based on Kriging technique to monitor ionosphere behavior. Adv. Space Res. 60(8), 1606–1616 (2017). https://doi.org/10.1016/j.asr.2017.05.008

    ADS  Article  Google Scholar 

  23. Sakai, T., Matsunaga, K., Hoshinoo, K., Walter, T.: Modeling ionospheric spatial threat based on dense observation datasets for MSAS. In: Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008) (2008)

    Google Scholar 

  24. Sarma, A.D., Venkata Ratnam, D., Krishna Reddy, D.: Modeling low latitude ionosphere using modified planar fit method for GAGAN. IET Radar Sonar Navig. 3, 609–619 (2009). https://doi.org/10.1049/iet-rsn.2009.0022

    Article  Google Scholar 

  25. Schunk, R.W., Raitt, W.J., Banks, P.M.: Effect of electric fields on the daytime high-latitude E and F regions. J. Geophys. Res. 80, 3121–3130 (1975)

    ADS  Article  Google Scholar 

  26. Sparks, L., Blanch, J., Pandya, N.: Estimating ionospheric delay using kriging: 1. Methodology. Radio Sci. 46, RS0D21 (2011a). https://doi.org/10.1029/2011RS004667

    Google Scholar 

  27. Sparks, L., Blanch, J., Pandya, N.: Estimating ionospheric delay using kriging: 2. Impact on satellite-based augmentation system availability. Radio Sci. 46, RS0D22 (2011b). https://doi.org/10.1029/2011RS004781

    Google Scholar 

  28. Tanna, H.J., Pathak, K.N.: Multifractality due to long-range correlation in the L-band ionospheric scintillation S4 index time series. Astrophys. Space Sci. 350, 47–56 (2013). https://doi.org/10.1007/s10509-013-1742-5

    ADS  Article  Google Scholar 

  29. Tsunoda, R.T.: Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res. 90(A1), 447–456 (1985). https://doi.org/10.1029/JA090iA01p00447

    ADS  Article  Google Scholar 

  30. Walter, T., Hansen, A., Blanch, J., Enge, P., Mannucci, T., Pi, X., Sparks, L., Iijima, B., El-Arini, B., Lejeune, R., Hagen, M., Altshuler, E., Fries, R., Chu, A.: Robust detection of ionospheric irregularities. J. Inst. Navig. 48(2), 89–100 (2001)

    Article  Google Scholar 

  31. Yuan, Y., Ou, J.: An improvement to ionospheric delay correction for single-frequency GPS users—the APR-I scheme. J. Geod. 75, 331–336 (2001)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Office of the Surveyor General of the Federal Government of Nigeria (NIGNET network), the administrator of IGS, AFREF and SONEL networks for preserving the GNSS data and make it publicly available for scientific community. The authors also thank the Editor and the anonymous reviewers for their objective assessment of the paper and their valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. E. Abe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abe, O.E., Rabiu, A.B., Bolaji, O.S. et al. Modeling African equatorial ionosphere using ordinary Kriging interpolation technique for GNSS applications. Astrophys Space Sci 363, 168 (2018). https://doi.org/10.1007/s10509-018-3387-x

Download citation

Keywords

  • Regional ionosphere maps
  • Ionosphere delays
  • Kriging
  • Planar fit
  • GNSS applications