Modeling African equatorial ionosphere using ordinary Kriging interpolation technique for GNSS applications

  • O. E. AbeEmail author
  • A. B. Rabiu
  • O. S. Bolaji
  • E. O. Oyeyemi
Original Article


The ability to model the ionosphere accurately for single frequency users in satellite applications has gained some appreciable usage, most especially during quiet conditions in a mild (middle latitudes) ionosphere. However, solving the problem of ionosphere for single frequency user of Global Navigation Satellite Systems (GNSS) in equatorial ionization anomaly (EIA) region is of a great concern for space scientists and engineers. Several methodologies have been used to develop models that describe global or regional maps for ionosphere errors in order to mitigate the effect of the errors on GNSS systems. Global or regional ionosphere Maps have been known to be an efficient tool to monitor the delay introduced by the ionosphere in the satellite signals. This research uses the conventional Planar fit and ordinary Kriging methodologies to assess a regional map for ionosphere correction in equatorial African sector. The result obtained is an indication that modified Kriging methodology describes the EIA ionosphere corrections better compared with ordinary Kriging and Planar fit methodologies.


Regional ionosphere maps Ionosphere delays Kriging Planar fit GNSS applications 



The authors are grateful to the Office of the Surveyor General of the Federal Government of Nigeria (NIGNET network), the administrator of IGS, AFREF and SONEL networks for preserving the GNSS data and make it publicly available for scientific community. The authors also thank the Editor and the anonymous reviewers for their objective assessment of the paper and their valuable suggestions.


  1. Aarons, J.: The role of the ring current in the generation or inhibition of equatorial \(F\) layer irregularities during magnetic storm. Radio Sci. 26(4), 1131–1149 (1991) ADSCrossRefGoogle Scholar
  2. Abdu, M.A., Bittencourt, J.A., Batista, I.S.: Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J. Geophys. Res. 86, 11443–11446 (1981) ADSCrossRefGoogle Scholar
  3. Abe, O.E., Rabiu, A.B., Radicella, S.M.: Longitudinal asymmetry of the occurrence of the plasma irregularities over African low latitude region. Pure Appl. Geophys. (2018). Google Scholar
  4. Adeniyi, J.O.: Magnetic storm effects on the morphology of the equatorial \(F2\) layer. J. Atmos. Terr. Phys. 48, 695 (1986) ADSCrossRefGoogle Scholar
  5. Beutler, G., Bauersima, I., Gurtner, W., Rothacher, M., Schildknecht, T.: Atmospheric Refraction and Other Important Biases in GPS Carrier Phase Observations. Monograph 12. School of Surveying, University of New South Wales, Australia, pp. 15–43 (1988) Google Scholar
  6. Bhattacharya, S., Purohit, P.K., Tiwari, R., Gwal, A.K.: Study of GPS based ionospheric scintillation and its effect on dual frequency receiver. J. Eng. Sci. Manag. Educ. 1, 55–61 (2010) Google Scholar
  7. Campbell, J., Maniatis, T., Muller, A., Vierbuchen, J., Lohmar, F.J.L.: On the generation of ionospheric refraction corrections for single frequency GPS measurements. In: Proc. 4th Int. Geod. Symp. Sat. Pos., 28 Apr.–2 May, Austin (1986) Google Scholar
  8. Chandra, H., Rastogi, R.G.: Equatorial spread F over solar cycle. Ann. Geophys. 28(4), 709–716 (1972) Google Scholar
  9. Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., Radicella, S.M.: Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 81, 111–120 (2007). ADSCrossRefGoogle Scholar
  10. Conker, R.S., El-Arini, M.B., Albertson, T.W., Klobuchar, J.A., Doherty, P.H.: Development and assessment of real-time algorithms to estimate the ionospheric error bounds for WAAS. Navigation 44(1), 77–87 (1997) CrossRefGoogle Scholar
  11. Danilov, A.D.: Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 52(3), 343–366 (2013). ADSCrossRefGoogle Scholar
  12. DasGupta, A., Lee, M.C., Klobuchar, J.A.: VHF Faraday polarization fluctuations and strong L-band amplitude scintillations near Appleton anomaly crests. Nature 298, 354–357 (1982). ADSCrossRefGoogle Scholar
  13. Fejer, B.G., Scherliess, L., de Paula, E.R.: Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread \(F\). J. Geophys. Res. 104(4A), 19859–19869 (1999) ADSCrossRefGoogle Scholar
  14. Lee, C., Liu, J.Y., Reinisch, B.W., Chen, W.S., Chu, F.D.: The effect of prereversal drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum. Ann. Geophys. 23, 745–751 (2005). ADSCrossRefGoogle Scholar
  15. Manisilla, G.A.: Mid-latitude ionospheric effects of a great geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 66, 1085–1091 (2004) ADSCrossRefGoogle Scholar
  16. Manju, G., Devacia, C.V., Sridharan, R.: On the seasonal variations of the threshold height for the occurrence of equatorial spread \(F\) during solar minimum and maximum year. Ann. Geophys. 25, 855–861 (2007). ADSCrossRefGoogle Scholar
  17. Mikhailov, V.V., Teryokhin, Yu.L., Wagner, C.-U.: The evaluation of statistical accuracy for ionosphere F1-region theoretical model at low level of solar activity. Geomagn. Aeron. 29, 861–863 (1989) ADSGoogle Scholar
  18. Mikhailov, A.V., Mikhailov, V.V., Skoblin, M.G.: Monthly median \(f_{0}F_{2}\) and \(M(3000)F_{2}\) ionospheric model over Europe. In: Numerical Mapping and Modelling and Their Applications to PRIME. Proceedings of the PRIME COST 238 Workshop, pp. 219–236 (1994) Google Scholar
  19. Mikhailov, A.V., Skoblin, M.G., Förster, M.: Daytime F2-layer positive storm effect at middle and lower latitudes. Ann. Geophys. 13, 532–540 (1995) ADSCrossRefGoogle Scholar
  20. Prasad, N., Sarma, A.D.: Ionospheric time delay estimation using IDW grid model for GAGAN. J. Indian Geophys. Union 8(4), 319–327 (2004) Google Scholar
  21. Prolls, G.: In: Volland, H. (ed.) Handbook of Atmospheric Electrodynamics, vol. 2, pp. 195–248. CRC Press, Boca Raton (1995) Google Scholar
  22. Rodríguez-Bouza, M., Paparini, C., Otero, X., Herraiz, M., Radicella, S.M., Abe, O.E., Rodríguez-Caderot, G.: Southern European Ionospheric TEC Maps based on Kriging technique to monitor ionosphere behavior. Adv. Space Res. 60(8), 1606–1616 (2017). ADSCrossRefGoogle Scholar
  23. Sakai, T., Matsunaga, K., Hoshinoo, K., Walter, T.: Modeling ionospheric spatial threat based on dense observation datasets for MSAS. In: Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008) (2008) Google Scholar
  24. Sarma, A.D., Venkata Ratnam, D., Krishna Reddy, D.: Modeling low latitude ionosphere using modified planar fit method for GAGAN. IET Radar Sonar Navig. 3, 609–619 (2009). CrossRefGoogle Scholar
  25. Schunk, R.W., Raitt, W.J., Banks, P.M.: Effect of electric fields on the daytime high-latitude E and F regions. J. Geophys. Res. 80, 3121–3130 (1975) ADSCrossRefGoogle Scholar
  26. Sparks, L., Blanch, J., Pandya, N.: Estimating ionospheric delay using kriging: 1. Methodology. Radio Sci. 46, RS0D21 (2011a). Google Scholar
  27. Sparks, L., Blanch, J., Pandya, N.: Estimating ionospheric delay using kriging: 2. Impact on satellite-based augmentation system availability. Radio Sci. 46, RS0D22 (2011b). Google Scholar
  28. Tanna, H.J., Pathak, K.N.: Multifractality due to long-range correlation in the L-band ionospheric scintillation S4 index time series. Astrophys. Space Sci. 350, 47–56 (2013). ADSCrossRefGoogle Scholar
  29. Tsunoda, R.T.: Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. J. Geophys. Res. 90(A1), 447–456 (1985). ADSCrossRefGoogle Scholar
  30. Walter, T., Hansen, A., Blanch, J., Enge, P., Mannucci, T., Pi, X., Sparks, L., Iijima, B., El-Arini, B., Lejeune, R., Hagen, M., Altshuler, E., Fries, R., Chu, A.: Robust detection of ionospheric irregularities. J. Inst. Navig. 48(2), 89–100 (2001) CrossRefGoogle Scholar
  31. Yuan, Y., Ou, J.: An improvement to ionospheric delay correction for single-frequency GPS users—the APR-I scheme. J. Geod. 75, 331–336 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • O. E. Abe
    • 1
    • 2
    Email author
  • A. B. Rabiu
    • 3
  • O. S. Bolaji
    • 4
  • E. O. Oyeyemi
    • 4
  1. 1.Department of PhysicsFederal University Oye-EkitiOye-EkitiNigeria
  2. 2.Department of PhysicsFederal University of TechnologyAkureNigeria
  3. 3.Centre for Atmospheric ResearchNational Space Research & Development Agency, NASRDAAnyigbaNigeria
  4. 4.Department of PhysicsUniversity of LagosAkokaNigeria

Personalised recommendations