Numerical periodic orbits of charged grains around magnetic planets

Original Article


We apply a numerical searching method to investigate three-dimensional periodic orbits of charged dust particles in planetary magnetospheres. A classic generalized Stormer model of magnetic planets along with the parameters of Saturn is employed. More periodic orbits are found, besides the already known circular periodic orbits in or parallel to the equatorial plane. We divide all these orbits into six categories based on their appearances. By calculating the characteristic multipliers of the orbits, we investigate the stabilities of these periodic orbits.


Numerical methods Magnetic planets Charged particles Periodic orbits Stability 



This work was supported by the National Natural Science Foundation of China (Grant No. 11772167).


  1. Dragt, A.: Trapped orbits in a magnetic dipole field. Rev. Geophys. 3(2), 255–298 (1965) ADSCrossRefGoogle Scholar
  2. Dragt, A., Finn, J.: Insolubility of trapped particle motion in a magnetic dipole field. J. Geophys. Res. 81(13), 2327–2340 (1976) ADSCrossRefGoogle Scholar
  3. Hamilton, D.P.: Motion of dust in a planetary magnetosphere: orbit-averaged equations for oblateness, electromagnetic and radiation forces with application to Saturn’s E ring. Icarus 101(2), 244–264 (1993) ADSCrossRefGoogle Scholar
  4. Horányi, M.: Charged dust dynamics in the solar system. Annu. Rev. Astron. Astrophys. 34(1), 383–418 (1996) ADSCrossRefGoogle Scholar
  5. Howard, J.E., Horányi, M., Stewart, G.A.: Global dynamics of charged dust particles in planetary magnetospheres. Phys. Rev. Lett. 83(20), 3993–3996 (1999) ADSCrossRefGoogle Scholar
  6. Howard, J.E., Dullin, H.R., Horányi, M.: Stability of Halo orbits. Phys. Rev. Lett. 84(15), 3244 (2000) ADSCrossRefGoogle Scholar
  7. Howard, J.E., Dullin, H.R., Horányi, M.: Generalizations of the Störmer Problem for dust grain orbits. Physica D 171(3), 178–195 (2001) MATHGoogle Scholar
  8. Iñarrea, M., Lanchares, V., Palacián, J.F., Pascual, A.I., Salas, J.P., Yanguas, P.: The Keplerian regime of charged particles in planetary magnetospheres. Physica D 197(3–4), 242–268 (2004) ADSMathSciNetMATHGoogle Scholar
  9. Iñarrea, M., Lanchares, V., Palacián, J.F., Pascual, A.I., Salas, J.P., Yanguas, P.: Global dynamics of dust grains in magnetic planets. Phys. Lett. A 338(3–5), 247–252 (2005) ADSCrossRefMATHGoogle Scholar
  10. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical System, the Three-Body Problem and Space Mission Design. World Scientific, Berlin (2006) MATHGoogle Scholar
  11. Perko, L.: Differential Equation and Dynamical System, 3rd edn. Springer, Berlin (2001) CrossRefMATHGoogle Scholar
  12. Schaffer, L., Burns, J.A.: Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains. J. Geophys. Res. Space Phys. 99(A9), 17211–17223 (1994) ADSCrossRefGoogle Scholar
  13. Shilnikov, L.P., Shilnikov, A.L., Turaev, D., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Hackensack (1998) CrossRefMATHGoogle Scholar
  14. Störmer, C.: Sur les trajectories des corpuscules electrices. Arch. Sci. Phys. Nat. 24(5–18), 113–158 (1907). 221–247 Google Scholar
  15. Yu, Y., Baoyin, H.: Generating families of 3D periodic orbits about asteroids. Mon. Not. R. Astron. Soc. 427(1), 872–881 (2012) ADSCrossRefGoogle Scholar
  16. Yu, W., Han, D., Wang, J.: In: Numerical Modeling of Dust Dynamics Around Small Asteroids. AIAA SPACE, (2016) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina

Personalised recommendations