Lifetime maps for orbits around Callisto using a double-averaged model

Abstract

The present paper studies the lifetime of orbits around a moon that is in orbit around its mother planet. In the context of the inner restricted three-body problem, the dynamical model considered in the present study uses the double-averaged dynamics of a spacecraft moving around a moon under the gravitational pulling of a disturbing third body in an elliptical orbit. The non-uniform distribution of the mass of the moon is also considered. Applications are performed using numerical experiments for the Callisto–spacecraft–Jupiter system, and lifetime maps for different values of the eccentricity of the disturbing body (Jupiter) are presented, in order to investigate the role of this parameter in these maps. The idea is to simulate a system with the same physical parameters as the Jupiter–Callisto system, but with larger eccentricities. These maps are also useful for validation and improvements in the results available in the literature, such as to find conditions to extend the available time for a massless orbiting body to be in highly inclined orbits under gravitational disturbances coming from the other bodies of the system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Anderson, J.D., Jacobson, R.A., Lau, E.L., Moore, W.B., Schubert, G.: J. Geophys. Res. 106, 32963 (2001). doi:10.1029/2000JE001367

    ADS  Article  Google Scholar 

  2. Araujo, R.A.N., Winter, O.C., Prado, A.F.B.A.: Mon. Not. R. Astron. Soc. 449, 4404 (2015). doi:10.1093/mnras/stv592. arXiv:1503.07546

    ADS  Article  Google Scholar 

  3. Blitzer, L.: Am. J. Phys. 27, 634 (1959). doi:10.1119/1.1934947

    ADS  MathSciNet  Article  Google Scholar 

  4. Boué, G., Laskar, J.: Icarus 201, 750 (2009)

    ADS  Article  Google Scholar 

  5. Broucke, R.A.: J. Guid. Control Dyn. 26, 27 (2003). doi:10.2514/2.5041

    ADS  Article  Google Scholar 

  6. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics (1961)

    Google Scholar 

  7. Cardoso dos Santos, J., Carvalho, J.P.S., Vilhena De Moraes, R., Prado, A.F.B.A.: In: International Astronautical Congress, Jerusalem, Israel, 12–16 October (2015). IAC paper C1.IP.4

    Google Scholar 

  8. Carvalho, J.P.S.: Orbital evolution of a solar sail around a planet. In: Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, vol. 4 (2016). doi:10.5540/03.2016.004.01.0017

    Google Scholar 

  9. Carvalho, J.P.S., Vilhena de Moraes, R., Prado, A.F.B.A.: Celest. Mech. Dyn. Astron. 108, 371 (2010). doi:10.1007/s10569-010-9310-6

    ADS  Article  Google Scholar 

  10. Carvalho, J.P.S., Mourão, D.C., Elipe, A., Vilhena De Moraes, R., Prado, A.F.B.A.: Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 1250240 (2012a). doi:10.1142/S0218127412502409

    Article  Google Scholar 

  11. Carvalho, J.P.S., Elipe, A., Vilhena De Moraes, R., Prado, A.F.B.A.: Adv. Space Res. 49, 994 (2012b). doi:10.1016/j.asr.2011.11.036

    ADS  Article  Google Scholar 

  12. Carvalho, J.P.S., de Moraes, R.V., Prado, A.F.B.A., Mourão, D.C., Winter, O.C.: Comput. Appl. Math. 35, 847 (2016a). doi:10.1007/s40314-015-0270-z

    MathSciNet  Article  Google Scholar 

  13. Carvalho, J.P.S., Mourão, D.C., de Moraes, R.V., Prado, A.F.B.A., Winter, O.C.: Celest. Mech. Dyn. Astron. 124, 73 (2016b). doi:10.1007/s10569-015-9650-3

    ADS  Article  Google Scholar 

  14. Carvalho, J.P.S., Cardoso dos Santos, J., Prado, A.F.B.A., Vilhena De Moraes, R.: Some characteristics of orbits for a spacecraft around Mercury, Comput. Appl. Math. (2017). doi:10.1007/s40314-017-0525-y

  15. Condoleo, E., Cinelli, M., Ortore, E., Circi, C.: J. Guid. Control Dyn. 39, 2264 (2016). doi:10.2514/1.G000455

    ADS  Article  Google Scholar 

  16. Domingos, R.C., Prado, A.F.B.A., Gomes, V.M.: Math. Probl. Eng. 2014, 359845 (2014). doi:10.1155/2014/359845

    Article  Google Scholar 

  17. Domingos, R.C., Vilhena De Moraes, R., Prado, A.F.B.A.: Math. Probl. Eng. 2008, 763654 (2008). doi:10.1155/2008/763654

    Article  Google Scholar 

  18. ESA: Juice Definition Study Report (red Book) (2014). http://sci.esa.int/juice/54994-juice-definition-study-report/

  19. Fang, J., Margot, J., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A.: Astron. J. 141, 154 (2011). doi:10.1088/0004-6256/141/5/154

    ADS  Article  Google Scholar 

  20. Farago, F., Laskar, J.: Mon. Not. R. Astron. Soc. 401, 1189 (2010). doi:10.1111/j.1365-2966.2009.15711.x. arXiv:0909.2287

    ADS  Article  Google Scholar 

  21. Ferrer, S., Osacar, C.: Celest. Mech. Dyn. Astron. 58, 245 (1994). doi:10.1007/BF00691977

    ADS  Article  Google Scholar 

  22. Giacaglia, G.E.O.: SAO Special Report, 352 (1973)

  23. Giacaglia, G.E.O., Murphy, J.P., Felsentreger, T.L.: Celest. Mech. 3, 3 (1970). doi:10.1007/BF01230432

    ADS  Article  Google Scholar 

  24. Giuliatti Winter, S.M., Winter, O.C., Vieira Neto, E., Sfair, R.: Mon. Not. R. Astron. Soc. 430, 1892 (2013). doi:10.1093/mnras/stt015

    ADS  Article  Google Scholar 

  25. Gomes, V., Domingos, R.C.: Comput. Appl. Math. 35, 653 (2016). doi:10.1007/s40314-015-0258-8

    MathSciNet  Article  Google Scholar 

  26. Hough, M.E.: Celest. Mech. 25, 111 (1981). doi:10.1007/BF01230514

    ADS  Article  Google Scholar 

  27. Kaula, W.M.: Astron. J. 67, 300 (1962). doi:10.1086/108729

    ADS  Article  Google Scholar 

  28. Kovalevsky, J. (ed.): Introduction to Celestial Mechanics. Astrophys. Space Sci. Library, vol. 7 (1967). doi:10.1007/978-94-011-7545-6

    Google Scholar 

  29. Kozai, Y.: On the effects of the sun and moon upon the motion of a close earth satellite. Technical report (1959)

  30. Kozai, Y.: Astron. J. 67, 591 (1962). doi:10.1086/108790

    ADS  MathSciNet  Article  Google Scholar 

  31. Lara, M., Russell, R.: In: 2006 AAS/AIAA SpaceFlight Mechanics Meeting, Tampa, Florida, January 22–26 (2006). http://hdl.handle.net/2014/38715

    Google Scholar 

  32. Lidov, M.L.: Planet. Space Sci. 9, 719 (1962). doi:10.1016/0032-0633(62)90129-0

    ADS  Article  Google Scholar 

  33. Liu, X., Baoyin, H., Ma, X.: Astrophys. Space Sci. 339, 295 (2012). doi:10.1007/s10509-012-1015-8. arXiv:1203.1770

    ADS  Article  Google Scholar 

  34. Meyer, K.W., Buglia, J.J., Desai, P.N.: NASA STI/Recon Technical Report N 94 (1994)

  35. Murray, C.D., Dermott, S.F.: Solar System Dynamics (2000)

    Google Scholar 

  36. Musen, P., Bailie, A., Upton, E.: NASA Spec. Publ. 54, 24 (1965)

    ADS  Google Scholar 

  37. Naoz, S.: ArXiv e-prints (2016). arXiv:1601.07175

  38. Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J.: Nature 473, 187 (2011). doi:10.1038/nature10076. arXiv:1011.2501

    ADS  Article  Google Scholar 

  39. Naoz, S., Li, G., Zanardi, M., de Elía, G.C., Di Sisto, R.P.: ArXiv e-prints (2017). arXiv:1701.03795

  40. NASA: Mission to Europa (Acessed: January/2017). https://www.nasa.gov/europa/

  41. Ortiz, J.L., Santos-Sanz, P., Sicardy, B., et al.: Nature 550, 219 (2017). doi:10.1038/nature24051

    ADS  Article  Google Scholar 

  42. Paskowitz, M.E., Scheeres, D.J.: J. Guid. Control Dyn. 29, 1147 (2006). doi:10.2514/1.19464

    ADS  Article  Google Scholar 

  43. Prado, A.F.B.A.: J. Guid. Control Dyn. 26, 33 (2003). doi:10.2514/2.5042

    ADS  Article  Google Scholar 

  44. Prado, A.F.B.A.: Adv. Space Res. 53, 877 (2014). doi:10.1016/j.asr.2013.12.034

    ADS  Article  Google Scholar 

  45. Scheeres, D.J., Guman, M.D., Villac, B.F.: J. Guid. Control Dyn. 24, 778 (2001). doi:10.2514/2.4778

    ADS  Article  Google Scholar 

  46. Sehnal, L.: Bull. Astron. Inst. Czechoslov. 11, 90 (1960)

    ADS  Google Scholar 

  47. Tresaco, E., Elipe, A., Carvalho, J.P.S.: J. Guid. Control Dyn. 39(7), 1659 (2016). doi:10.2514/1.G001510

    ADS  Article  Google Scholar 

  48. Vilhena De Moraes, R., Costa, M.L.G.T.X., Carvalho, J.P.S., Prado, A.F.B.A.: In: International Astronautical Congress, Guadalajara, Mexico, 26–30 September (2016). IAC paper C1,6,10,x35324

    Google Scholar 

Download references

Acknowledgements

The authors wish to honor God for all the opportunities given during the development of this work. Special thanks are extended to reviewers for their valuable ideas and suggestions. The authors also acknowledge the support from UNESP, UFRB, INPE, UNIFESP. This work was sponsored by the São Paulo Research Foundation—FAPESP (processes 2013/26652-4, 2012/12539-9, 2016/24561-0, 2016/14665-2, 2012/21023-6, 2011/05671-5, 2011/08171-3) and the National Council for Scientific and Technological Development—CNPq (contracts 406841/2016-0, 301338/2016-7, 306953/2014-5, 420674/2016-0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josué Cardoso dos Santos.

Appendix

Appendix

The present appendix shows the figures containing the results discussed in the text. The simulations and plots were made with proper computer codes developed using the softwares Maple and Gnuplot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cardoso dos Santos, J., Carvalho, J.P.S., Prado, A.F.B.A. et al. Lifetime maps for orbits around Callisto using a double-averaged model. Astrophys Space Sci 362, 227 (2017). https://doi.org/10.1007/s10509-017-3200-2

Download citation

Keywords

  • Lifetime of orbits
  • Double-average
  • Third-body perturbation
  • Orbital perturbations
  • Moons, perturbation maps