Skip to main content

On the planar central configurations of rhomboidal and triangular four- and five-body problems

Abstract

We consider a symmetric five-body problem with three unequal collinear masses on the axis of symmetry. The remaining two masses are symmetrically placed on both sides of the axis of symmetry. Regions of possible central configurations are derived for the four- and five-body problems. These regions are determined analytically and explored numerically. The equations of motion are regularized using Levi-Civita type transformations and then the phase space is investigated for chaotic and periodic orbits by means of Poincaré surface of sections.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Alvarez-Ramírez, M., Corbera, M., Llibre, J.: On the central configurations in the spatial 5-body problem with four equal masses. Celest. Mech. Dyn. Astron. 124, 433 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. Bakker, L., Simmons, S.: Discrete Contin. Dyn. Syst. 35, 2 (2012)

    Google Scholar 

  3. Burgos-Garcia, J., Delgado, J.: Astrophys. Space Sci. 345, 247 (2013)

    ADS  Article  Google Scholar 

  4. Cheb-Terrab, E.S., Oliveira, H.P.: Comput. Phys. Commun. 95(2–3), 171 (1996)

    ADS  Article  Google Scholar 

  5. Chen, K.C.: Arch. Ration. Mech. Anal. 158, 293 (2001)

    MathSciNet  Article  Google Scholar 

  6. Corbera, M., Llibre, J.: J. Math. Phys. 47, 122701 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  7. Corbera, M., Cors, J.M., Roberts, G.E.: arXiv:1610.08654 (2016)

  8. Csillik, I.: Metode de Regularizare în Mecanica Cerească (Regularization Methods in Celestial Mechanics). Casa Cărţii de Ştiinţă, Cluj-Napoca (2003)

    Google Scholar 

  9. Delgado-Fernandez, J., Perez-Chavela, E.: The rhomboidal four-body problem. Global flow on the total collision manifold. In: The Geometry of Hamiltonian Systems, pp. 97–110. Springer, New York (1991)

    Chapter  Google Scholar 

  10. Deng, C., Zhang, S.: J. Geom. Phys. 83, 43 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  11. Diacu, F.: Lecture held at the Annual Session of the Astronomical Institute of Romanian Academy, 15–16 May 2003, Bucharest

  12. Dziobek, O.: Astron. Nachr. 152, 32 (1900)

    ADS  Article  Google Scholar 

  13. Gidea, M., Llibre, J.: Celest. Mech. Dyn. Astron. 106(1), 89 (2010)

    ADS  Article  Google Scholar 

  14. Hampton, M.: Nonlinearity 18(5), 2299 (2005)

    MathSciNet  Article  Google Scholar 

  15. Hampton, M., Jensen, A.: Celest. Mech. Dyn. Astron. 109(4), 321 (2011)

    ADS  Article  Google Scholar 

  16. Ji, J.H., Liao, X.H., Liu, L.: Chin. Astron. Astrophys. 24, 381 (2000)

    ADS  Article  Google Scholar 

  17. Kulesza, M., Marchesin, M., Vidal, C.: J. Phys. A, Math. Theor. 44, 485204 (2011)

    Article  Google Scholar 

  18. Lacomba, E.A., Perez-Chavela, E.: Celest. Mech. Dyn. Astron. 54, 343 (1992)

    ADS  Article  Google Scholar 

  19. Lacomba, E.A., Perez-Chavela, E.: Celest. Mech. Dyn. Astron. 57, 411 (1993)

    ADS  Article  Google Scholar 

  20. Lee, T.L., Santoprete, M.: Celest. Mech. Dyn. Astron. 104(4), 369 (2009)

    ADS  Article  Google Scholar 

  21. Llibre, J.: Proc. Am. Math. Soc. 143, 3587 (2015)

    Article  Google Scholar 

  22. Llibre, J., Mello, L.F.: Celest. Mech. Dyn. Astron. 100, 141 (2008)

    ADS  Article  Google Scholar 

  23. Llibre, J., Moeckel, R., Simó, C.: Central Configurations. Springer, Basel (2015)

    Google Scholar 

  24. MacMillan, W.D., Bartky, W.: Trans. Am. Math. Soc. 34, 838 (1932); Dyn. Astron. 57, 411

    Article  Google Scholar 

  25. Marchesin, M., Vidal, C.: Celest. Mech. Dyn. Astron. 115, 261 (2013)

    ADS  Article  Google Scholar 

  26. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the \(n\)-Body Problem. Springer, New York (1992)

    Book  MATH  Google Scholar 

  27. Mioc, V., Barbosu, M.: Serb. Astron. J. 167, 47 (2003)

    ADS  Article  Google Scholar 

  28. Mioc, V., Blaga, C.: Hvar Obs. Bull. 23, 41 (1999)

    ADS  Google Scholar 

  29. Moeckel, R.: Scholarpedia 9(4), 10667 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  30. Ollongren, A.: J. Symb. Comput. 6(1), 117 (1988)

    MathSciNet  Article  Google Scholar 

  31. Perez-Chavela, E., Santoprete, M.: Arch. Ration. Mech. Anal. 185, 481 (2007)

    MathSciNet  Article  Google Scholar 

  32. Roberts, G.E.: Physica D 127, 141 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  33. Shoaib, M., Steves, B.A., Széll, A.: New Astron. 13, 639 (2008)

    ADS  Article  Google Scholar 

  34. Shoaib, M., Faye, I., Sivasankaran, A.: Some special solutions of the rhomboidal five-body problem. In: International Conference on Fundamental and Applied Sciences 2012 (ICFAS2012), vol. 1482, pp. 496–501. AIP, New York (2012)

    Google Scholar 

  35. Shoaib, M., Sivasankaran, A., Aziz, Y.A.: Chaotic Model. Simul. (CMSIM) 3(3), 431 (2013)

    Google Scholar 

  36. Shoaib, M., Kashif, A.R., Sivasankaran, A.: Adv. Astron. 2016, 9897681 (2016)

    ADS  Article  Google Scholar 

  37. Simó, C.: Celest. Mech. 18, 165 (1978)

    ADS  Article  Google Scholar 

  38. Szücs-Csillik, I.: Poster presented at the Symposium “Vistas in Astronomy, Astrophysics and Space Sciences” (2016)

  39. Waldvogel, J.: Celest. Mech. Dyn. Astron. 113, 113 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  40. Yan, D.: J. Math. Anal. Appl. 388, 942 (2012)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and the anonymous reviewer for their constructive comments, which helped us improve the presentation of the manuscript. We also thank Professor Mihail Barbosu for correcting and improving the language of the manuscript. I. Szücs-Csillik is partially supported by a grant of the Romanian Ministry of National Education and Scientific Research, RDI Programme for Space Technology and Advanced Research - STAR, project number 513, 118/14.11.2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iharka Szücs-Csillik.

Appendix

Appendix

Derivation of \(R_{N_{\mu_{0}}}\)

The numerator of \(\mu_{0}\), \(N_{\mu_{0}}\) is positive when \({A}_{ {1}}{C}_{{2}}{C}_{{3}}>0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+{B}_{ {2}}{C}_{{1}}{C}_{{3}}<0\) or when both factors have opposite sign and the positive factor is greater than the absolute value of the negative factor. All these possibilities are listed below with the corresponding regions, where \(N_{\mu_{0}}>0\):

  1. 1.

    \({A}_{{1}}{C}_{{2}}{C}_{{3}}>0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+ {B}_{{2}}{C}_{{1}}{C}_{{3}}<0\): Using numerical approximation techniques we see that \(N_{\mu_{0}}>0\) in the following region:

    $$ R_{cN_{\mu_{0}}}(t,w)=R_{aN_{\mu_{0}}}(t,w)\cup R_{bN_{\mu_{0}}}(t,w), $$
    (56)

    where

    $$\begin{aligned} R_{aN_{\mu_{0}}}(t,w) =&\bigl\{ (t,w)|(0< t< 0.41\wedge0< w< 1) \\ &{}\vee(0.41< t< 1\wedge w>2.41)\vee\bigl(-1.73 \\ &{}< w\leq-1.5\wedge0.75\cdot d_{2}(w)< t< 1\bigr)\bigr\} , \\ R_{bN_{\mu_{0}}}(t,w) =&(w< -1.8\wedge0< t< 0.23)\vee(-1.43 \\ &{}< w\leq-1\wedge0.56< t< 1)\vee(-1< w \\ &{}< -0.41\wedge0.41< t< -w)\vee(2< w \\ &{}< 2.41\wedge0.41< t< 1). \end{aligned}$$
  2. 2.

    \({A}_{{1}}{C}_{{2}}{C}_{{3}}>0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+ {B}_{{2}}{C}_{{1}}{C}_{{3}}>0\). It is numerically confirmed that \({B}_{{1}}{B}_{{3}}{C}_{{2}}+{B}_{{2}}{C}_{{1}}{C}_{{3}}>{A}_{{1}} {C}_{{2}}{C}_{{3}}\) when \({A}_{{1}}{C}_{{2}}{C}_{{3}}>0\). Hence, \(N_{\mu_{0}}<0\) for all \((t,w)\) such that \({A}_{{1}}{C}_{{2}}{C}_{ {3}}>0\).

  3. 3.

    \({A}_{{1}}{C}_{{2}}{C}_{{3}}<0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+ {B}_{{2}}{C}_{{1}}{C}_{{3}}<0\). In this case using numerical approximation techniques we find that \(N_{\mu_{0}}\) is positive in the following region:

    $$\begin{aligned} R_{dN_{\mu_{0}}}(t,w) =&\bigl\{ (t,w)|(-1.73< w< -1.5 \\ &{}\wedge 0< t< 0.25)\vee\bigl(-1.5\leq w< -1 \\ &{}\wedge 0< t< 0.2\cdot d_{2}(w)\bigr)\vee(0< t< 0.41 \\ &{}\wedge -t< w < 0) \vee(0.41< t< 1 \\ &{}\wedge 0< w< 1)\bigr\} . \end{aligned}$$

Hence, \(N_{\mu_{0}}>0\) in (see Fig. 9b)

$$ R_{N_{\mu_{0}}}=R_{cN_{\mu_{0}}}(t,w)\cup R_{dN_{\mu_{0}}}(t,w). $$
(57)

Derivation of \(R_{N_{\mu_{2}}}\)

The numerator of \(\mu_{2}\), \(N_{\mu_{2}}\), is always positive when \(A_{3}B_{2}C_{1} >0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}C_{3}<0\). It is not necessarily positive when \(A_{3}B_{2}C_{1}>0\) and \(A_{1}A_{3}C_{2}+A _{2}C_{1}C_{3}<0\) or \(A_{3}B_{2}C_{1}<0\) and \(A_{1}A_{3}C_{2}+A_{2}C _{1}C_{3}<0\). It might be positive in a segment of this region or might not be positive at all. We will list all these possibilities below with the corresponding regions, where \(N_{\mu_{2}}>0\).

  1. 1.

    \(A_{3}B_{2}C_{1}>0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}B_{3}<0\). Using numerical approximation techniques we show that \(N_{\mu_{2}}>0\) in

    $$\begin{aligned} R_{aN_{\mu_{2}}}(t,w) =&aaN_{\mu_{2}}(t,w)\cup baN_{\mu_{2}}(t,w) \\ &{}\cup caN _{\mu_{2}}(t,w), \end{aligned}$$
    (58)

    where

    $$\begin{aligned} aaN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|\bigl(0< w\leq0.41\wedge d_{1}(w) \\ &{}< t< 1\bigr) \vee\bigl(0.41< w< 0.58 \\ &{}\wedge d_{1}(w)< t< 0.5\cdot d_{2}(w)\bigr) \\ &{}\vee\bigl(w>\sqrt{3}\wedge0< t< d_{1}(w)\bigr)\bigr\} , \\ baN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|(w\leq-2.41\wedge0.463 \\ &{}- 0.079\cdot w < t< 1)\vee\bigl(-2.41< w \\ &{}< -1.73\wedge0.463-0.079w \\ &{}< t < 0.5 d_{2}(w)\bigr)\bigr\} , \\ caN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|1< w< 1.73 \wedge 0< t< d_{1}(w)\bigr\} . \end{aligned}$$
  2. 2.

    \(A_{3}B_{2}C_{1}>0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}B_{3}>0\). Using numerical approximation techniques we show that \(N_{\mu_{2}}>0\) in

    $$\begin{aligned} R_{bN_{\mu_{2}}}(t,w) =& abN_{\mu_{2}}(t,w)\cup bbN_{\mu_{2}}(t,w) \\ &{}\cup cbN _{\mu_{2}}(t,w), \end{aligned}$$
    (59)

    where

    $$\begin{aligned} abN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|{-}1.73< w< -1 \\ &{}\wedge 0< t< 0.5\cdot d_{2}(w)\bigr\} , \\ bbN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|1< w< 1.73 \wedge 0< t< d_{1}(w)\bigr\} , \\ cbN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|(w\leq-2.41\wedge 0< t< 1) \\ &{}\vee\bigl(-2.41< w< -1.73 \\ &{}\wedge 0< t< 0.5\cdot d_{2}(w)\bigr)\bigr\} . \end{aligned}$$
  3. 3.

    \(A_{3}B_{2}C_{1}<0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}B_{3}<0\). Using numerical approximation techniques we show that \(N_{\mu_{2}}>0\) in

    $$ R_{cN_{\mu_{2}}}(t,w)=acN_{\mu_{2}}(t,w)\cup bcN_{\mu_{2}}(t,w), $$
    (60)

    where

    $$\begin{aligned} acN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|\bigl(-2.4< w< -2 \\ &{}\wedge 0.5\cdot d_{2}(w)< t< 1\bigr)\vee \\ &{}\wedge \bigl(1< w< 1.73\wedge d_{1}(w)< t< 1\bigr)\bigr\} , \\ bcN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|\bigl(1.31\cdot t^{2}-2.012 \cdot t+0.9 \\ &{}< w< 0.58\wedge0< t< d_{1}(w)\bigr) \\ &{}\vee \bigl(1.31\cdot t^{2}-2.012 \cdot t+0.9\leq w< 1 \\ &{}\wedge 0< t< 0.5 \cdot d_{2}(w)\bigr) \\ &{}\vee \bigl(w>1.732\wedge d_{1}(w)< t< 1\bigr)\bigr\} . \end{aligned}$$

    Therefore, \(N_{\mu_{2}}(t,w)>0\) in the region

    $$ R_{N_{\mu_{2}}}=R_{aN_{\mu_{2}}}(t,w)\cup R_{bN_{\mu_{2}}}(t,w)\cup R _{cN_{\mu_{2}}}(t,w). $$
    (61)

Derivation of \(R_{N_{\mu_{4}}}\)

\(N_{\mu_{4}}\) is always positive when \(A_{2}B_{1}C_{3}>0\) and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\). It is not necessarily positive when \(A_{2}B_{1}C_{3}>0\) and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\) or when both factors are negative. It might be positive in a segment of this region or might not be positive at all. We will list all these possibilities below with the corresponding regions, where \(N_{\mu_{4}}>0\).

  1. 1.

    When \(A_{2}B_{1}C_{3}>0\), and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\), \(N_{\mu_{4}}> 0\) in the region

    $$\begin{aligned} R_{aN_{\mu_{4}}} =&\bigl\{ (t,w)|(1.73< w< 2.4\wedge0.< t< d_{1}) \\ &{}\vee (-1< w< -0.41\wedge-w< t< 1) \\ &{}\vee (0< w< 1 \wedge d_{1}< t< 1) \\ &{}\vee \bigl(w< -377.64t^{4}+677.58t^{3}-458.06t^{2} \\ &{}+136.9t-17.79\wedge0.25< t< 0.6\bigr) \\ &{}\vee (-1< w< -0.41\wedge0< t< 0.05) \\ &{}\vee (1.73< w< 2.41\wedge d_{1}< t< 0.41)\bigr\} . \end{aligned}$$
  2. 2.

    When \(A_{2}B_{1}C_{3}>0\), and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}>0\), \(N_{\mu_{4}}> 0\) in the region

    $$\begin{aligned} R_{bN_{\mu_{4}}} =&\bigl\{ (t,w)|(0.1< w< 1\wedge0.41< t< d_{1}) \\ &{}\vee (1< w< 1.73\wedge d_{1}< t< 0.41) \\ &{}\vee (1.73< w< 2.41\wedge0.41< t< 1) \\ &{}\vee (-1< w< -0.41\wedge-w< t< 1) \\ &{}\vee (0< w< 1\wedge d_{1}< t< 1) \\ &{}\vee (1< w< 1.73\wedge0< t< d_{1}) \\ &{}\vee \bigl(1.31t^{2}-2t+0.9< w< 1 \wedge 0< t< 0.41\bigr) \\ &{}\vee (1< w< 1.73\wedge0.41< t< 1) \\ &{}\vee (1.73< w< 2.41\wedge d_{1}< t< 0.41)\bigr\} . \end{aligned}$$
  3. 3.

    When \(A_{2}B_{1}C_{3}<0\), and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\), \(N_{\mu_{4}}>0\) in the region

    $$\begin{aligned} R_{cN_{\mu_{4}}} =&\bigl\{ (t,w)|(-0.41< w< 0\wedge0< t< -w) \\ &{}\vee\bigl(w< -1.3t^{2}-1.9t+3.44 \\ &{}\wedge d_{1}< t< 0.41\bigr) \\ &{}\vee(w>2.41\wedge0< t< d_{1})\bigr\} . \end{aligned}$$

    Therefore, \(N_{\mu_{4}}(t,w)>0\) in (see Fig. 11a)

    $$ R_{N_{\mu_{4}}}=R_{aN_{\mu_{4}}}(t,w)\cup R_{bN_{\mu_{4}}}(t,w)\cup R _{cN_{\mu_{4}}}(t,w). $$
    (62)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoaib, M., Kashif, A.R. & Szücs-Csillik, I. On the planar central configurations of rhomboidal and triangular four- and five-body problems. Astrophys Space Sci 362, 182 (2017). https://doi.org/10.1007/s10509-017-3161-5

Download citation

Keywords

  • Central configuration
  • \(n\)-Body problem
  • Chaos
  • Periodic orbits